965 resultados para Holocene regressive barrier
Resumo:
Ilha Comprida is a regressive barrier island located in southeastern Brazil that was formed essentially by Quaternary sandy sediments. Ilha Comprida sediments were analyzed to assess heavy mineral indices and grain size variables. The spatial variation of heavy minerals and grain size was interpreted in terms of the present barrier dynamics and the barrier`s evolution since the Middle Holocene. These analyses allowed for the identification of the main factors and processes that control the variation of heavy minerals and grain size on the barrier. Rutile and zircon (RZi) and tourmaline and hornblende (THi) are significantly sensitive to provenance and exhibit the contributions of the Ribeira de Iguape River sediments, which reach the coast next to the northeastern end of Ilha Comprida. In addition to the influence of provenance, TZi responds mainly to hydraulic sorting processes. This agrees with a sediment transport pattern characterized by a divergence of two resultant net alongshore drifts southwest of the barrier. The sediments from the Ribeira de Iguape River reach the barrier directly through the river mouth and indirectly after temporary storage in the inner shelf. The combination of grain size and heavy mineral analyses is a reliable method for determining sediment transport patterns and provenance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Twenty-two 14C datings were performed at the central sector of the Paraná coast to define Holocene regressive barrier evolution. The barrier Pleistocene substratum was ascribed an age between 40 400 and 30 000 yr BP, but it can also represent the penultimate sea level highstand during marine isotope stage 5e. The Holocene barrier samples provided ages between 8542-8279 and 2987-2751 cal yr BP, and showed at least six age inversions that were related to age differences between in situ or low-distance transported shells or trunk fragments, and high-distance transported vegetal debris, wood fragments and organic matter samples. The regressive Holocene barrier age was 4402-4135 cal yr BP near the base, and 2987-2751 cal yr BP near the top. Most of the vegetal remains were transported by ebb tidal currents from the estuaries to the inner shelf below wave base level during the mid-Holocene highstand; they were transported onshore by storm waves and littoral currents during the sea level lowering after the sea level maximum, and were deposited mainly as middle shoreface swaley cross-stratification facies. © 2008.
Resumo:
Barrier development during the Holocene is studied using the example of the Ilha Comprida, Southeastern Brazil. Aerial photos, facies analysis, and optically stimulated luminescence dating are used to define the barrier emergence and evolution. Optically stimulated luminescence ages and facies successions indicate that the Ilha Comprida probably began as a Holocene transgressive barrier island 6000 years ago, just before the last relative sea-level maximum. Since then the barrier has progradated through the addition of curved beach ridges. Based on beach ridge alignments, six units of growth are identified with two growth directions, transverse and longitudinal. Rates of progradation with transverse growth vary from 0.13 to 4.6 m/year. Rates of longitudinal growth to NE range from 5.2 to 30 m/year. Variation in coastal progradation rates and sediment retention during the last 6000 years is compared with climate, physiography and relative sea-level changes. The physiography, represented by pre-Cenozoic hills, is the major control on sediment retention and alternation between longitudinal and transverse growth. Climate variations, such as the Little Ice Age event, apparently control the formation of ridges types: beach ridges, foredunes, and blowouts. These results allow the use of the Ilha Comprida Barrier as an example to analyze the major controls on barriers progradation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A barreira costeira da Pinheira esta localizada no litoral Centro-Sul do estado de Santa Catarina. Sua rnorfologia e estratigrafia são típicas de uma barreira regressiva. Durante o Holoceno Superior (Últimos 5 ka), a barreira progradou cerca de 5.500 metros, a uma taxa media de 1 ,I mlano. Sua progradação foi determinada por um rebaixamento de aproximadamente 2 m do nível do mar e, principalmente, por uma expressivo aporte de sedimentos arenosos em seu sistema praial, provenientes da plataforma continental adjacente. Nos Últimos 3.500 metros de progradaHo da barreira, ocorridos nos Últimos 3.1 ka, cerca de 60 cordões de dunas frontais foram formados. O intervalo de tempo decorrido entre a formação de dois cordões sucessivos foi de aproximadamente 52 anos. O estudo das propriedades granulométricas do sistema praia-duna atual e de dois dos cordões antigos de dunas frontais, denominados cordões intermediArio e interno, e formados, respectivamente, há cerca de 1280 e 3140 anos AP, revelou que, nos Últimos 3 ka não ocorreram variações significativas destas propriedades. Esta não variação, no tempo, das propriedades granulométricas é atribuída a natureza policíclica do estoque de areia consumido na progradação da barreira e a sua manutenção como fonte de sedimentos durante a progradação, elou a uma relativa constância, nos últimos 3 ka, das condições dinâmicas gerais dos sistema praia-duna atual da enseada da Pinheira. O estudo comparativo entre os diferentes sub-ambientes, ou zonas do sistema praia-duna atual (face da praia, berma e duna frontal), mostrou que o desvio padrão e a assimetria são potencialmente importantes na distinção entre depdsitos eolicos (dunas frontais) e praiais (face da praia) da barreira.
Resumo:
Extensive drilling of the Great Barrier Reef (GBR) in the 70s and 80s illuminated the main factors controlling reef growth during the Holocene. However, questions remain about: (1) the precise nature and timing of reef "turnon" or initiation, (2) whether consistent spatio-temporal patterns occur in the bio-sedimentologic response of the reef to Holocene sea-level rise then stability, and (3) how these factors are expressed in the context of the different evolutionary states (juvenile-mature-senile reefs). Combining 21 new C14-AMS and 146 existing recalibrated radiocarbon and U/Th ages, we investigated the detailed spatial and temporal variations in sedimentary facies and coralgal assemblages in fifteen cores across four reefs (Wreck, Fairfax, One Tree and Fitzroy) from the Southern GBR. Our newly defined facies and assemblages record distinct chronostratigraphic patterns in the cores, displaying both lateral zonation across the different reefs and shallowing upwards sequences, characterised by a transition from deep (Porites/faviids) to shallow (Acropora/Isopora) coral types. The revised reef accretion curves show a significant lag period, ranging from 0.7-2 ka, between flooding of the antecedent Pleistocene substrate and Holocene reef turn-on. This lag period and dominance of more environmentally tolerant early colonizers (e.g., domal Porites and faviids), suggests initial conditions that were unfavourable for coral growth. We contend that higher input of fine siliciclastic material from regional terrigenous sources, exposure to hydrodynamic forces and colonisation in deeper waters are the main factors influencing initially reduced growth and development. All four reefs record a time lag and we argue that the size and shape of the antecedent platform is most important in determining the duration between flooding and recolonisation of the Holocene reef. Finally, our study of Capricorn Bunker Group Holocene reefs suggests that the size and shape of the antecedent substrate has a greater impact on reef evolution and final evolutionary state (mature vs. senile), than substrate depth alone.
Resumo:
Middle to Late Holocene barriers are conspicuous landforms in southeastern and southern Brazilian regions. The barriers in the coastal zones of northern Santa Catarina, Parana and Sao Paulo states (27 degrees 19`-24 degrees 00`S) are formed mainly by beach ridge alignments and many barriers present foredune and blowout alignments in their seaward portion. The development of these eolian landforms appears to record a regional shift in coastal dynamics and barrier building. In this context, the Ilha Comprida barrier stands out for its well-developed and well-preserved foredunes and blowouts. Based on the presence or not and type of eolian landforms, the Ilha Comprida barrier can be divided seaward into inner, middle and outer units. The inner unit is formed entirely by beach ridges. The middle unit comprises a narrow belt of blowouts (up to 15 m high) aligned alongshore. Blowout lobes pointing NNW are indicative of their generation by southern winds. The outer unit is represented by low (<= 1 m high) active or stabilized foredunes and a small transgressive dunefield (similar to 1 km(2)). Twenty-seven luminescence ages (SAR protocol) obtained for the beach ridges, foredunes, and blowouts of these three units allow definition of a precise chronology of these landforms and calculation of rates of coastal progradation. The inner unit presents ages greater than 1004 +/- 88 years. The blowouts of the middle unit show ages from 575 +/- 47 to 172 +/- 18 years. The ages of the outer unit are less than 108 +/- 10 years. Rates of coastal progradation for the inner and outer units are 0.71-0.82 m/year and 0.86-2.23 m/year, respectively. The main phase of blowout development correlates well with the Little Ice Age (LIA) climatic event. These results indicate that southern winds in subtropical Brazil became increasingly more intense and/or frequent during the LIA. These conditions persist to the present and are responsible for the development of the eolian landforms in the outer unit. Thus, barrier geomorphology can record global climatic events. The sensitivity of barrier systems in subtropical Brazil to Late Holocene climate changes was favored by the relative sea level stillstand during this time. Luminescence dating makes it possible to analyze barrier geomorphology during Late Holocene climate changes operating on timescales of a hundred to thousand years. These results improve our knowledge of barrier building and will help in the evaluation of the impact of future climate changes on coastal settings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.
Resumo:
A 2400 year record of environmental change is reported from a wetland on Bentinck Island in the southern Gulf of Carpentaria, northern Australia. Three phases of wetland development are identified, with a protected coastal setting from ca. 2400 to 500 years ago, transitioning into an estuarine mangrove forest from ca. 500 years ago to the 1940s, and finally to a freshwater swamp over the past +60 years. This sequence reflects the influence of falling sea-levels, development of a coastal dune barrier system, prograding shorelines, and an extreme storm (cyclone) event. In addition, there is clear evidence of the impacts that human abandonment and resettlement have on the island's fire regimes and vegetation. A dramatic increase in burning and vegetation thickening was observed after the cessation of traditional Indigenous Kaiadilt fire management practices in the 1940s, and was then reversed when people returned to the island in the 1980s. In terms of the longer context for human occupation of the South Wellesley Archipelago, it is apparent that the mangrove phase provided a stable and productive environment that was conducive for human settlement of this region over the past 1000 years.
Resumo:
A análise de dados de reflexão sísmica monocanal boomer (Hz ~ 700-4,000; penetração ~ 70 ms) adquiridos na plataforma continental interna-média (até ~ 50-60 m de profundidade) ao largo do sistema estuarino baía de Sepetiba, no Estado do Rio de Janeiro, Brasil, revelou a ocorrência de uma sucessão sedimentar preservada 15-20 m, sismicamente interpretada como representando ambientes fluvio-estuarinos para marinhos rasos. Estas séries são sotopostas à inconformidade regional mais superior reconhecida na escala de plataforma, chamada superfície S3. Esta superfície é erodida por numerosas incisões fluviais, que sugerem processos erosivos associados à prolongada exposição subaérea da plataforma continental durante o estágio isotópico marinho 2 (MIS 2), globalmente datada em ~ 20 ka A.P.. A preservação de tais unidades de corte e preenchimento estuarinho presumíveis Pleistoceno Superior-Holoceno na plataforma interna-média (até ~ 30 km da costa) evidencia pela primeira vez na área a existência de um paleo sistema fluvial bastante desenvolvido e processos dominantes de denudação na bacia hidrográfica a montante que atualmente alimenta a baía de Sepetiba. Bem como que, uma série de elementos arquiteturais sísmicos dentro desta sucessão estuarina, como canais de maré retrogradantes, registram a evolução do paleo sistema estuarino de um sistema aberto à um sistema parcialmente protegido durante a transgressão Holocênica. A formação e erosão de uma sucessão de ilhas barreira isoladas e canais de maré durante a transgressão persistiu até o desenvolvimento de uma superfície estratigráfica superior na área, interpretada como a superfície de máxima inundação (MFS) no registro estratigráfico. A ilha barreira atual (restinga da Marambaia) prograda sobre a MFS como uma feição deposição regressiva, apontando para uma idade mais jovem do que cerca de ~ 5 ka A. P., idade da transgressão máxima na área, de acordo com a literatura disponível.
Resumo:
O trabalho presente tem como enfoque o estudo da evolução quaternária da Baixada de Jacarepaguá situada no estado do Rio de Janeiro através do uso do método GPR (Ground Penetrating Radar). Os numerosos estudos feitos na Baixada de Jacarepaguá, baseados nas curvas de variação do nível do mar em diferentes setores da costa Brasileira (MARTIN et al. 1985) e datações ao radiocarbono contribuíram na elaboração de um modelo evolutivo no Pleistoceno e no Holoceno. Esse modelo mostra em primeiro lugar episódios transgressivos em 7000-5100 anos BP, 3900-3600 anos BP e 2700-2500 anos BP e episódios regressivos a 5100-3900 anos BP, 3600-2700 anos BP e depois de 2500 anos BP. Esses episódios de variações do nível relativo do mar tiveram por consequência a constante evolução da Baixada de Jacarepaguá do estado de ilha-barreira com uma e depois duas barreiras (interna e externa), fruto da inundação da planície por invasão marinha em episódios transgressivos, a um estado de planície costeira emersa em episódios regressivos com barreira progradante direção ao mar e processos erosivos associados. Esse modelo evolutivo não inclui dados processados obtidos com o GPR, método que permite por impulsos eletromagnéticos de alta freqüência gerar um perfil de refletores baseado nas descontinuidades elétricas na subsuperficie. Os perfis levantados e processados nesse trabalho permitiram confirmar esse modelo evolutivo, mostrando uma sucessão de migração do perfil de praia e geometria sedimentar associada em resposta as numerosas variações eustática local.
Resumo:
Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.
Resumo:
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.