23 resultados para Hispaniola
Resumo:
Four distinct rock units have been recognized near El Aguacate, in the Janico-Juncalito-La Vega area of the Duarte complex (Dominican Republic): (1) serpentinites crosscut by numerous diabasic dikes, (2) basalts interbedded with Late Jurassic ribbon cherts, (3) picrites and ankaramites relatively enriched in incompatible trace elements, and (4) amphibolites and gneissic amphibolites chemically similar to Oceanic Plateau Basalts. Similar Ar-Ar ages of late magmatic amphibole from a picrite, and hornblende from an amphibolite (86.1 +/- 1.3 Ma and 86.7 +/- 1.6 Ma, respectively), suggest that the Duarte picrites are contemporaneous with the Deep Sea Drilling Program Leg 15 and Ocean Drilling Program Leg 126 basalts drilled from the Caribbean oceanic plateau. These basalts are associated with sediments containing Late Cretaceous faunas. Sr, Nd, and Pb data show that enriched picrites and amphibolites are isotopically similar to mafic lavas from previously described Caribbean plateau and Galapagos hotspot basalts. Major element, trace element, and lead isotopic features of Late Jurassic basalts and diabases are consistent with those of normal oceanic crust basalt. However, these basalts differ from typical N-MORB because they have lower epsilon Nd ratios that plot within the range of Ocean Island Basalts. These rocks appear to represent remnants of the Caribbean Jurassic oceanic crust formed from an oceanic ridge possibly close to a hotspot. Later, they were tectonically juxtaposed with Late Cretaceous slices of the Caribbean-Colombian plateau.
Resumo:
The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.
Resumo:
An evaluation of the seismic hazard in La Hispaniola Island has been carried out, as part of the cooperative project SISMO-HAITI, supported by the Technical University of Madrid (UPM) and developed by several Spanish Universities, the National Observatory of Environment and Vulnerability) ONEV of Haiti, and with contributions from the Puerto Rico Seismic Network (PRSN) and University Seismological Institute of Dominican Republic (ISU). The study was aimed at obtaining results suitable for seismic design purposes. It started with the elaboration of a seismic catalogue for the Hispaniola Island, requiring an exhaustive revision of data reported by more than 20 seismic agencies, apart from these from the PRSN and ISU. The final catalogue contains 96 historical earthquakes and 1690 instrumental events, and it was homogenized to moment magnitude, Mw. Seismotectonic models proposed for the region were revised and a new regional zonation was proposed, taking into account geological andtectonic data, seismicity, focal mechanisms, and GPS observations. In parallel, attenuation models for subduction and crustal zones were revised in previous projects and the most suitable for the Caribbean plate were selected. Then, a seismic hazard analysis was developed in terms of peak ground acceleration, PGA, and spectral accelerations, SA (T), for periods of 0.1, 0.2, 0.5, 1 and 2s, using the Probabilistic Seismic Hazard Assessment (PSHA) methodology. As a result, different hazard maps were obtained for the quoted parameters, together with Uniform Hazard Spectra for Port au Prince and the main cities in the country. Hazard deaggregation was also carried out in these towns, for the target motion given by the PGA and SA (1s) obtained for return periods of 475, 975 and 2475 years. Therefore, the controlling earthquakes for short- and long-period target motions were derived. This study was started a few months after the 2010 earthquake, as a response to an aid request from the Haitian government to the UPM, and the results are available for the definition of the first building code in Haiti.
Resumo:
Story of the discoverer of the plate, Sir William Phips.
Resumo:
Antillean manatees (Trichechus manatus manatus) were heavily hunted in the past throughout the Wider Caribbean Region (WCR), and are currently listed as endangered on the IUCN Red List of Threatened Species. In most WCR countries, including Haiti and the Dominican Republic, remaining manatee populations are believed to be small and declining, but current information is needed on their status, distribution, and local threats to the species.
To assess the past and current distribution and conservation status of the Antillean manatee in Hispaniola, I conducted a systematic review of documentary archives dating from the pre-Columbian era to 2013. I then surveyed more than 670 artisanal fishers from Haiti and the Dominican Republic in 2013-2014 using a standardized questionnaire. Finally, to identify important areas for manatees in the Dominican Republic, I developed a country-wide ensemble model of manatee distribution, and compared modeled hotspots with those identified by fishers.
Manatees were historically abundant in Hispaniola, but were hunted for their meat and became relatively rare by the end of the 19th century. The use of manatee body parts diversified with time to include their oil, skin, and bones. Traditional uses for folk medicine and handcrafts persist today in coastal communities in the Dominican Republic. Most threats to Antillean manatees in Hispaniola are anthropogenic in nature, and most mortality is caused by fisheries. I estimated a minimum island-wide annual mortality of approximately 20 animals. To understand the impact of this level of mortality, and to provide a baseline for measuring the success of future conservation actions, the Dominican Republic and Haiti should work together to obtain a reliable estimate of the current population size of manatees in Hispaniola.
In Haiti, the survey of fishers showed a wider distribution range of the species than suggested by the documentary archive review: fishers reported recent manatee sightings in seven of nine coastal departments, and three manatee hotspot areas were identified in the north, central, and south coasts. Thus, the contracted manatee distribution range suggested by the documentary archive review likely reflects a lack of research in Haiti. Both the review and the interviews agreed that manatees no longer occupy freshwater habitats in the country. In general, more dedicated manatee studies are needed in Haiti, employing aerial, land, or boat surveys.
In the Dominican Republic, the documentary archive review and the survey of fishers showed that manatees still occur throughout the country, and occasionally occupy freshwater habitats. Monte Cristi province in the north coast, and Barahona province in the south coast, were identified as focal areas. Sighting reports of manatees decreased from Monte Cristi eastwards to the adjacent province in the Dominican Republic, and westwards into Haiti. Along the north coast of Haiti, the number of manatee sighting and capture reports decreased with increasing distance to Monte Cristi province. There was good agreement among the modeled manatee hotspots, hotspots identified by fishers, and hotspots identified during previous dedicated manatee studies. The concordance of these results suggests that the distribution and patterns of habitat use of manatees in the Dominican Republic have not changed dramatically in over 30 years, and that the remaining manatees exhibit some degree of site fidelity. The ensemble modeling approach used in the present study produced accurate and detailed maps of manatee distribution with minimum data requirements. This modeling strategy is replicable and readily transferable to other countries in the Caribbean or elsewhere with limited data on a species of interest.
The intrinsic value of manatees was stronger for artisanal fishers in the Dominican Republic than in Haiti, and most Dominican fishers showed a positive attitude towards manatee conservation. The Dominican Republic is an upper middle income country with a high Human Development Index. It possesses a legal framework that specifically protects manatees, and has a greater number of marine protected areas, more dedicated manatee studies, and more manatee education and awareness campaigns than Haiti. The constant presence of manatees in specific coastal segments of the Dominican Republic, the perceived decline in the number of manatee captures, and a more conservation-minded public, offer hope for manatee conservation, as non-consumptive uses of manatees become more popular. I recommend a series of conservation actions in the Dominican Republic, including: reducing risks to manatees from harmful fishing gear and watercraft at confirmed manatee hotspots; providing alternative economic alternatives for displaced fishers, and developing responsible ecotourism ventures for manatee watching; improving law enforcement to reduce fisheries-related manatee deaths, stop the illegal trade in manatee body parts, and better protect manatee habitat; and continuing education and awareness campaigns for coastal communities near manatee hotspots.
In contrast, most fishers in Haiti continue to value manatees as a source of food and income, and showed a generally negative attitude towards manatee conservation. Haiti is a low income country with a low Human Development Index. Only a single dedicated manatee study has been conducted in Haiti, and manatees are not officially protected. Positive initiatives for manatees in Haiti include: protected areas declared in 2013 and 2014 that enclose two of the manatee hotspots identified in the present study; and local organizations that are currently working on coastal and marine environmental issues, including research and education on marine mammals. Future conservation efforts for manatees in Haiti should focus on addressing poverty and providing viable economic alternatives for coastal communities. I recommend a community partnership approach for manatee conservation, paired with education and awareness campaigns to inform coastal communities about the conservation situation of manatees in Haiti, and to help change their perceived value. Haiti should also provide legal protection for manatees and their habitat.
Resumo:
The Caribbean genus Pseudophoenix (Arecaceae) has its center of taxonomic diversity in Hispaniola (Haiti and the Dominican Republic). Three species (P. ekmanii, P. lediniana, and P. vinifera) are restricted to this island. In this thesis I investigated the population genetic diversity and structure of Pseudophoenix using ten microsatellite loci. Results showed homozygote excess and high inbreeding coefficients in all populations across all polymorphic loci. Overall, there was high differentiation among populations. Results from the Bayesian and Neighbor Joining cluster analyses identified groups that were consistence with currently accepted species delimitation. We included the only known population of an undescribed morph from the Dominican Republic that has been suggested to represent a new species. Results from the cluster analyses suggested that this putative species is closely related to P. sargentii from Turk and Caicos. Our study provided insights pertinent to the conservation genetics and management of this genus in Hispaniola.
Resumo:
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high-resolution multibeam echo-sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate-boundary structures are a series of strike-slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre-existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike-slip regime. Along the most recent trace of the SOFZ, we measured a strike-slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS-derived motion of 9.8 ± 2 mm a−1 has remained stable during the entire Quaternary.
Resumo:
Nineteen areas on the island of Hispaniola (Haiti and the Dominican Republic) were studied with the aim of determining the distribution pattern of the endemic flora in these areas, and their variability with altitude. The main concentration of endemic species occurs in mountains with a medium altitude and in certain mountain sites (palaeo-islands), which coincide with hotspots; a lower number of endemics are found in low-lying areas (coldspots), due to the degradation of their habitats. A total of 1,582 endemic species were studied and were distributed in 19 areas. The whole island is of outstanding interest for its richness in endemics; it has 2,050 endemic species, representing 34.16% of its total flora. The territory in the study is home to 1,284 genera of which 31 are endemic to the island, including monotypical genera such as Tortuella abietifolia Urb. & Ekman, and endemic genera such as Hottea, containing seven endemic species. The sites with the highest rate of endemics are area A16 in the central range with a total of 440 endemic species, of which 278 are exclusive to the territory; and the Sierra de Bahoruco, la Selle, La Hotte and Tibur on in area A12, where we found 699 plants of which 482 are endemic and exclusive to the area; and A13 with 173 and 129 respectively. This work highlights the exceptional floristic diversity in endemic species and genera and analyses their distribution patterns as a tool for conservation in this area of the world, whose high endemicity rate makes it one of the most significant hotspots in the Caribbean.
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.