972 resultados para Hip joint center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel computerized algorithm for hip joint motion simulation and collision detection, called the Equidistant Method, has been developed. This was compared to three pre-existing methods having different properties regarding definition of the hip joint center and behavior after collision detection. It was proposed that the Equidistant Method would be most accurate in detecting the location and extent of femoroacetabular impingement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joint moments and joint powers are widely used to determine the effects of rehabilitation programs and prosthetic components (e.g., alignments). A complementary analysis of the 3D angle between joint moment and joint angular velocity has been proposed to assess whether the joints are predominantly driven or stabilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia.

Methods Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006–7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk.

Results Females accounted for 46.9% of the 642 primary THR performed during 2006–7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70–79 years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups.

Conclusions Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This pilot study defines the feasibility of cartilage assessment in symptomatic femoroacetabular impingement patients using intra-articular delayed gadolinium-enhanced MRI of cartilage (ia-dGEMRIC). Nine patients were scanned preliminary to study the contrast infiltration process into hip joint cartilage. Twenty-seven patients with symptomatic femoroacetabular impingement were subsequently scanned with intra-articular delayed gadolinium-enhanced MRI of cartilage. These T(1) findings were correlated to morphological findings. Zonal variations were studied. This pilot study demonstrates a significant difference between the pre- and postcontrast T(1) values (P < 0.001) remaining constant for 45 min. We noted higher mean T(1) values in morphologically normal-appearing cartilage than in damaged cartilage, which was statistically significant for all zones except the anterior-superior zone. Intraobserver (0.972) and interobserver correlation coefficients (0.933) were statistically significant. This study outlines the feasibility of intra-articular delayed gadolinium-enhanced MRI of cartilage for assessment of cartilage changes in patients with femoroacetabular impingement. It can also define the topographic extent and differing severities of cartilage damage.