969 resultados para Hilbert polynomial
Resumo:
We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.
Resumo:
Let I be an m-primary ideal of a Noetherian local ring (R, m) of positive dimension. The coefficient e(1)(I) of the Hilbert polynomial of an I-admissible filtration I is called the Chern number of I. A formula for the Chern number has been derived involving the Euler characteristic of subcomplexes of a Koszul complex. Specific formulas for the Chern number have been given in local rings of dimension at most two. These have been used to provide new and unified proofs of several results about e(1)(I).
Resumo:
Questo lavoro prende in esame lo schema di Hilbert di punti di C^2, il quale viene descritto assieme ad alcune sue proprietà, ad esempio la sua struttura hyper-kahleriana. Lo scopo della tesi è lo studio del polinomio di Poincaré di tale schema di Hilbert: ciò che si ottiene è una espressione del tipo serie di potenze, la quale è un caso particolare di una formula molto più generale, nota con il nome di formula di Goettsche.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
We study the power series ring R= K[[x1,x2,x3,...]]on countably infinitely many variables, over a field K, and two particular K-subalgebras of it: the ring S, which is isomorphic to an inverse limit of the polynomial rings in finitely many variables over K, and the ring R', which is the largest graded subalgebra of R. Of particular interest are the homogeneous, finitely generated ideals in R', among them the generic ideals. The definition of S as an inverse limit yields a set of truncation homomorphisms from S to K[x1,...,xn] which restrict to R'. We have that the truncation of a generic I in R' is a generic ideal in K[x1,...,xn]. It is shown in Initial ideals of Truncated Homogeneous Ideals that the initial ideal of such an ideal converge to the initial ideal of the corresponding ideal in R'. This initial ideal need no longer be finitely generated, but it is always locally finitely generated: this is proved in Gröbner Bases in R'. We show in Reverse lexicographic initial ideals of generic ideals are finitely generated that the initial ideal of a generic ideal in R' is finitely generated. This contrast to the lexicographic term order. If I in R' is a homogeneous, locally finitely generated ideal, and if we write the Hilbert series of the truncated algebras K[x1,...,xn] module the truncation of I as qn(t)/(1-t)n, then we show in Generalized Hilbert Numerators that the qn's converge to a power series in t which we call the generalized Hilbert numerator of the algebra R'/I. In Gröbner bases for non-homogeneous ideals in R' we show that the calculations of Gröbner bases and initial ideals in R' can be done also for some non-homogeneous ideals, namely those which have an associated homogeneous ideal which is locally finitely generated. The fact that S is an inverse limit of polynomial rings, which are naturally endowed with the discrete topology, provides S with a topology which makes it into a complete Hausdorff topological ring. The ring R', with the subspace topology, is dense in R, and the latter ring is the Cauchy completion of the former. In Topological properties of R' we show that with respect to this topology, locally finitely generated ideals in R'are closed.
Resumo:
This thesis describes a novel connectionist machine utilizing induction by a Hilbert hypercube representation. This representation offers a number of distinct advantages which are described. We construct a theoretical and practical learning machine which lies in an area of overlap between three disciplines - neural nets, machine learning and knowledge acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added the various advantages of its orthogonal lattice structure as against less structured nets. We discuss the case for such a fundamental and low level empirical learning tool and the assumptions behind the machine are clearly outlined. Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-dimensional space using a complemented distributed lattice as a basis for supervised learning is derived from first principles on clearly laid out scientific principles. The resulting "subhypercube theory" was implemented in a development machine which was then used to test the theoretical predictions again under strict scientific guidelines. The scope, advantages and limitations of this machine were tested in a series of experiments. Novel and seminal properties of the machine include: the "metrical", deterministic and global nature of its search; complete convergence invariably producing minimum polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise present; a learning engine which is mathematically analysable in depth based upon the "complexity range" of the function concerned; a strong bias towards the simplest possible globally (rather than locally) derived "balanced" explanation of the data; the ability to cope with variables in the network; and new ways of reducing the exponential explosion. Performance issues were addressed and comparative studies with other learning machines indicates that our novel approach has definite value and should be further researched.
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.