902 resultados para Higher-order shear deformation theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-phase functionally graded materials are a particular type of composite materials whose properties are tailored to vary continuously, depending on its two constituent's composition distribution, and which use is increasing on the most diverse application fields. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, exactly because of this continuous properties variation characteristic, which enables among other advantages smoother stresses distribution profile. In this paper we study the influence of different homogenization schemes, namely the schemes due to Voigt, Hashin-Shtrikman and Mod-Tanaka, which can be used to obtain bounds estimates for the material properties of particulate composite structures. To achieve this goal we also use a set of finite element models based on higher order shear deformation theories and also on first order theory. From the studies carried out, on linear static analyses and on free vibration analyses, it is shown that the bounds estimates are as important as the deformation kinematics basis assumed to analyse these types of multifunctional structures. Concerning to the homogenization schemes studied, it is shown that Mori-Tanaka and Hashin-Shtrikman estimates lead to less conservative results when compared to Voigt rule of mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general derivation of the anharmonic coefficients for a periodic lattice invoking the special case of the central force interaction is presented. All of the contributions to mean square displacement (MSD) to order 14 perturbation theory are enumerated. A direct correspondance is found between the high temperature limit MSD and high temperature limit free energy contributions up to and including 0(14). This correspondance follows from the detailed derivation of some of the contributions to MSD. Numerical results are obtained for all the MSD contributions to 0(14) using the Lennard-Jones potential for the lattice constants and temperatures for which the Monte Carlo results were calculated by Heiser, Shukla and Cowley. The Peierls approximation is also employed in order to simplify the numerical evaluation of the MSD contributions. The numerical results indicate the convergence of the perturbation expansion up to 75% of the melting temperature of the solid (TM) for the exact calculation; however, a better agreement with the Monte Carlo results is not obtained when the total of all 14 contributions is added to the 12 perturbation theory results. Using Peierls approximation the expansion converges up to 45% of TM• The MSD contributions arising in the Green's function method of Shukla and Hubschle are derived and enumerated up to and including 0(18). The total MSD from these selected contributions is in excellent agreement with their results at all temperatures. Theoretical values of the recoilless fraction for krypton are calculated from the MSD contributions for both the Lennard-Jones and Aziz potentials. The agreement with experimental values is quite good.