969 resultados para Higher Dimensions
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.
Resumo:
Following the original analysis Of Zhang and Hu for the 4-dimensional generalization of Quantum Hall effect, there has been much work from different viewpoints on the higher dimensional condensed matter systems. In this paper, we discuss three kinds of topological excitations in the SO(4) gauge field of condensed matter systems in 4-dimension-the instantons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the phi-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topological currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is shown that the topological charges of these excitations are characterized by the Hopf indices and Brouwer degrees of phi-mapping. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
We call attention to a series of mistakes in a paper by S. Nam recently published in this journal (J. High Energy Phys. 10 (2000) 044).
Resumo:
Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
Quasiconformal mappings are natural generalizations of conformal mappings. They are homeomorphisms with 'bounded distortion' of which there exist several approaches. In this work we study dimension distortion properties of quasiconformal mappings both in the plane and in higher dimensional Euclidean setting. The thesis consists of a summary and three research articles. A basic property of quasiconformal mappings is the local Hölder continuity. It has long been conjectured that this regularity holds at the Sobolev level (Gehring's higher integrabilty conjecture). Optimal regularity would also provide sharp bounds for the distortion of Hausdorff dimension. The higher integrability conjecture was solved in the plane by Astala in 1994 and it is still open in higher dimensions. Thus in the plane we have a precise description how Hausdorff dimension changes under quasiconformal deformations for general sets. The first two articles contribute to two remaining issues in the planar theory. The first one concerns distortion of more special sets, for rectifiable sets we expect improved bounds to hold. The second issue consists of understanding distortion of dimension on a finer level, namely on the level of Hausdorff measures. In the third article we study flatness properties of quasiconformal images of spheres in a quantitative way. These also lead to nontrivial bounds for their Hausdorff dimension even in the n-dimensional case.
Resumo:
We show that a fluid under strong spatially periodic confinement displays a glass transition within mode-coupling theory at a much lower density than the corresponding bulk system. We use fluctuating hydrodynamics, with confinement imposed through a periodic potential whose wavelength plays an important role in our treatment. To make the calculation tractable we implement a detailed calculation in one dimension. Although we do not expect simple 1d fluids to show a glass transition, our results are indicative of the behavior expected in higher dimensions. In a certain region of parameter space we observe a three-step relaxation reported recently in computer simulations [S. H. Krishnan, Ph.D. thesis, Indian Institute of Science (2005); Kim et al., Eur. Phys. J. Special Topics 189, 135 (2010)] and a glass-glass transition. We compare our results to those of Krakoviack [Phys. Rev. E 75, 031503 (2007)] and Lang et al. [Phys. Rev. Lett. 105, 125701 (2010)].
Resumo:
We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in R-d, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The aggregates we consider in this paper include COUNT, sum, and MAX. First, we develop a structure for answering two-dimensional range-COUNT queries that uses O(N/B) disk blocks and answers a query in O(log(B) N) I/Os, where N is the number of input points and B is the disk block size. The structure can be extended to obtain a near-linear-size structure for answering range-sum queries using O(log(B) N) I/Os, and a linear-size structure for answering range-MAX queries in O(log(B)(2) N) I/Os. Our structures can be made dynamic and extended to higher dimensions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The notion of the 1-D analytic signal is well understood and has found many applications. At the heart of the analytic signal concept is the Hilbert transform. The problem in extending the concept of analytic signal to higher dimensions is that there is no unique multidimensional definition of the Hilbert transform. Also, the notion of analyticity is not so well under stood in higher dimensions. Of the several 2-D extensions of the Hilbert transform, the spiral-phase quadrature transform or the Riesz transform seems to be the natural extension and has attracted a lot of attention mainly due to its isotropic properties. From the Riesz transform, Larkin et al. constructed a vortex operator, which approximates the quadratures based on asymptotic stationary-phase analysis. In this paper, we show an alternative proof for the quadrature approximation property by invoking the quasi-eigenfunction property of linear, shift-invariant systems. We show that the vortex operator comes up as a natural consequence of applying this property. We also characterize the quadrature approximation error in terms of its energy as well as the peak spatial-domain error. Such results are available for 1-D signals, but their counter part for 2-D signals have not been provided. We also provide simulation results to supplement the analytical calculations.