933 resultados para High-temperature environment
Resumo:
This report was prepared by Fabric Research Laboratories, Inc. under USAF Contract No. AF33 (616)--6234 under Project No. 7320, Task No. 73201.
High-sensitivity fiber Bragg grating temperature sensor at high temperature [一种高温下高灵敏光纤光栅温度传感器的制作方法]
Resumo:
A method of making full use of the durable strain which fiber Bragg grating (FBG) can undertake is presented, which hugely improves the sensitivities of FBG temperature sensors at high temperature. When a sensor is manufactured at room temperature, its FBG should be given a pre-relaxing length according to the temperature it is asked to measure; once the temperature rise to the asked one, its FBG starts to be stretched and it starts to work with high sensitivity. The relationship between the pre-relaxing length and the working temperature is analyzed. In experiments, when the pre-relaxing lengths are 0.2mm、0.5mm、0.6mm, the working temperatures rise 25℃、50℃、61℃, respectively, and the sensitivities are almost the same (675pm/℃). The facts that the experimental results agree well with the theoretical analyses verify this method’s validity.
Resumo:
The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus×domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21 degrees C (optimum temperature, OT) and 38 : 21 degrees C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R-2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10-11 kbar and 450-650 degrees C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 degrees C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic-ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, Iherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24-22 kbar and 1060-1040 degrees C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm-Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic-ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite-trondhjemite-granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a >90 km x 40 km-size slab of continental crust containing mafic-ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic-ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Detailed investigation of the chemical states and local atomic environment of Ni and Zn in the two-phase composites of Zn1-xNixO/NiO was reported. The X-ray photoelectron spectra of both Ni-2p and Zn-2p revealed the existence of a doublet with spin-orbit splitting approximate to 17.9 and 23.2eV, respectively confirming the divalent oxidation state of both Ni and Zn. However, the samples fabricated under oxygen-rich conditions exhibit significant difference in the binding energy approximate to 18.75eV between the 2p3/2 and 2p1/2 states of Ni. The shift in the satellite peaks of Ni-2p with increasing the Ni composition x within the Zn1-xNixO/NiO matrix signifies the attenuation of nonlocal screening because of reduced site occupancy of two adjacent Zn ions. The temperature dependence of X-ray diffraction analysis reveals a large distortion in the axial-rhombohedral angle for oxygen-rich NiO. Conversely, no significant distortion was noticed in the NiO system present as a secondary phase within Zn1-xNixO. Nevertheless, the unit-cell volume of both wurtzite h.c.p. Zn1-xNixO and f.c.c. NiO exhibits an anomalous behavior between 150 and 300 degrees C. The origin of such unusual change in the unit-cell volume was discussed in terms of oxygen stoichiometry.
Resumo:
In this work, a novel substitutional solid solution (W0.8Al0.2)C was synthesized by mechanically activated high-temperature reaction. X-ray diffraction was used for phase identification during the whole reaction process. Environment scanning electronic microscopy-field emission gun and energy dispersive x-ray were used to investigate the microstructure and the quantitative material composition of the specimen. (W(0.8)A(10.2))C was found to crystallize in the WC-type, and the cell parameters were a = 2.907(1) angstrom and c = 2.837(1) angstrom. The hardness of (W0.8Al0.2)C was tested to be 19.3 +/- 1 GPa, and the density was 13.19 +/- 0.05 g cm(-3).
Resumo:
High-energy irradiation of exoplanets has been identified to be a key influence on the stability of these planets' atmospheres. So far, irradiation-driven mass-loss has been observed only in two Hot Jupiters, and the observational data remain even more sparse in the super-Earth regime. We present an investigation of the high-energy emission in the CoRoT-7 system, which hosts the first known transiting super-Earth. To characterize the high-energy XUV radiation field into which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed a 25 ks XMM-Newton observation of the host star. Our analysis yields the first clear (3.5σ) X-ray detection of CoRoT-7. We determine a coronal temperature of ≈ 3 MK and an X-ray luminosity of 3 × 1028 erg s-1. The level of XUV irradiation on CoRoT-7b amounts to ≈37 000 erg cm-2 s-1. Current theories for planetary evaporation can only provide an order-of-magnitude estimate for the planetary mass loss; assuming that CoRoT-7b has formed as a rocky planet, we estimate that CoRoT-7b evaporates at a rate of about 1.3 × 1011 g s-1 and has lost ≈4-10 earth masses in total.
Resumo:
Brief periods of high temperature which occur near flowering can severely reduce the yield of annual crops such as wheat and groundnut. A parameterisation of this well-documented effect is presented for groundnut (i.e. peanut; Arachis hypogaeaL.). This parameterisation was combined with an existing crop model, allowing the impact of season-mean temperature, and of brief high-temperature episodes at various times near flowering, to be both independently and jointly examined. The extended crop model was tested with independent data from controlled environment experiments and field experiments. The impact of total crop duration was captured, with simulated duration being within 5% of observations for the range of season-mean temperatures used (20-28 degrees C). In simulations across nine differently timed high temperature events, eight of the absolute differences between observed and simulated yield were less than 10% of the control (no-stress) yield. The parameterisation of high temperature stress also allows the simulation of heat tolerance across different genotypes. Three parameter sets, representing tolerant, moderately sensitive and sensitive genotypes were developed and assessed. The new parameterisation can be used in climate change studies to estimate the impact of heat stress on yield. It can also be used to assess the potential for adaptation of cropping systems to increased temperature threshold exceedance via the choice of genotype characteristics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.
Resumo:
Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12 °C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56°49' N, 07°23' W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.
Resumo:
Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400-4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.
Resumo:
We would like to thank EPSRC for a Doctoral Training Grant (G.A.M) and the Erasmus programme for supporting the study visit to Turin (R.W). We would also like to thank Dr. Federico Cesano for SEM/EDX measurements and for fruitful discussion. Dr. Jo Duncan is thanked for his tremendous insight during XRD interpretation.
Resumo:
This study assesses the Vitamin D status of 126 healthy free-living adults aged 18–87 years, in southeast Queensland, Australia (27°S) at the end of the 2006 winter. Participants provided blood samples for analysis of 25(OH)D (the measure of an individual’s Vitamin D status), PTH, Calcium, Phosphate, and Albumin, completed a questionnaire on sun-protective/sun-exposure behaviours, and were assessed for phenotypic characteristics such as skin/hair/eye colour and BMI. We found that 10.2% of the participants had serum 25(OH)D levels below 25 nmol/l (considered deficient) and a further 32.3% had levels between 25 nmol/l and 50 nmol/l (considered insufficient). Our results show that low levels of 25(OH)D can occur in a substantial proportion of the population at the end of winter, even in a sunny climate. 25(OH)D levels were higher amongst those who spent more time in the sun and lower among obese participants (BMI > 30) than those who were not obese (BMI < 30). 25(OH)D levels were also lower in participants who had black hair, dark/olive skin, or brown eyes, when compared with participants who had brown or fair hair, fair skin, or blue/green eyes. No associations were found between 25(OH)D status and age, gender, smoking status, or the use of sunscreen.