916 resultados para High-frequency (HF) plasma sources
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (HF) electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In thi high frequency limit, the mode frequencies are not significantly changed by the HF field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of HF field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at omega i/ square root 2, omega i being the ion plasma frequency, as a result similar to the case of no HF field.
Resumo:
Inverters with high voltage conversion ratio are used in systems with sources such as batteries, photovoltaic (PV) modules or fuel cells. Transformers are often used in such inverters to provide the required voltage conversion ratio and isolation. In this paper, a compact high-frequency (HF) transformer interfaced AC link inverter with lossless snubber is discussed. A high performance synchronized modulation scheme is proposed for this inverter. This modulation addresses the issue of over-voltage spikes due to transformer leakage inductance and it is shown that the circuit can operate safely even when the turn-on delay, such as dead-time, is not used in the HF rectifier section. The problem of spurious turn-on in the HF inverter switches is also mitigated by the proposed modulation method. The circuit performance is validated experimentally with a $900W$ prototype inverter.
Resumo:
This paper focuses on a new high-frequency (HF) link dc-to-three-phase-ac power converter. The least number of switching devices among other HF link dc-to-three-phase-ac converters, improved power density due to the absence of devices of bidirectional voltage-blocking capability, simple commutation requirements, and isolation between input and output are the integral features of this topology. The commutation process of the converter requires zero portions in the link voltage. This causes a nonlinear distortion in the output three-phase voltages. The mathematical analysis is carried out to investigate the problem, and suitable compensation in modulating signal is proposed for different types of carrier. Along with the modified modulator structure, a synchronously rotating reference-frame-based control scheme is adopted for the three-phase ac side in order to achieve high dynamic performance. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experimental results with 1-kVA prototype.
Resumo:
To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.
Resumo:
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.
Resumo:
The self-modulation process of a high-frequency surface wave (SW) in a wave-guiding structure - a semibounded magnetoactive plasma and perfectly conducting metal wall - is considered for the weak nonlinearity approximation. Estimates are given for the contributions to the nonlinear frequency shift of the SW from the two principal self-action channels: via the generation of a signal of the doubled frequency and of static surface perturbations, arising as the result of the action of a ponderomotive force. Solutions for the field envelope of the nonlinear wave are examined with regard to their stability with respect to longitudinal and transverse perturbations.
Resumo:
High-frequency electrostatic surface waves at the interface of a dusty plasma and a dielectric wall are investigated. The effects of ionization, recombination, and dust-charge variation are taken into account in a self-consistent manner, so that the system considered is closed. It is shown that a coupling of the surface waves and the dust-charge relaxation mode leads to anomalous damping and frequency downshift of the waves.
Resumo:
The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.