873 resultados para High yield
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
The dimethoxytetralol gives on Vilsmeier reaction the dihydronaphthaldehyde (yield,92%), which on Grignard reaction with MeMgI affords the title compound (yield,�100%), the reactions constituting a high yield synthesis of this important anthracyclinone intermediate.
Resumo:
Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6-28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.
Resumo:
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (ICFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K-D similar to 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access In recent years, IGFBPs have been implicated in a variety of cancers However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Eschericha coli Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E coli and first structural characterization of a full-length IGFBP (C) 2010 Elsevier Inc. All rights reserved
Resumo:
Pyridinium poly(hydrogen fluoride) reacts with the oxide of vanadium(V) and chlorides of chromium(III), iron (III) and Co(II) at room temperature forming the pyridinium salts of hexafluoro vanadate(V), hexafluorochromate(III), hexafluoroferrate(III) and hexafluorocobaltate(II) in near quantitative yields (80%). These pyridinium salts are the precursors for the preparation of the alkali metal hexafluorometallates by metathetic reactions in acetonitrile medium with the corresponding metal chlorides. The prepared salts have been identified by their infrared spectral data and elemental analysis.
Resumo:
Tris(dicyclohexylamino)silane. (DCA)3SiH. is prepared by the reaction of trichlorosilane with dicyclohexylamine. This is found to undergo transamination reactions with other secondary amines (R2NH). such as pyrrolidine, piperidine, hexamethyleneimine. morpholine. N-methylpiperazine and diethylamine to yield mixed tri(amino)silanes of the formula (DCA)(R2N)2SiH in quantitative yields. These new derivatives are found to be moisture sensitive and hydrolyze to yield their respective amines, hydrogen and silica. They are found to be stable in an inert atmosphere. They have been characterized by IR, NMR (H-1, Si-29), mass spectroscopy and CHN analysis. N-15 NMR for one of the compounds has been done.
Resumo:
Tri(amino)silanes were prepared by the condensation of trichlorosilane with secondary amines in 1:6 molar ratio. Reactions of trichlorosilane with pyrrolidine, piperidine, hexamethyleneimine, morpholine, N-methylpiperazine and diethylamine afford the tri(amino)silanes in nearly quantitative yields. Their physical and spectroscopic properties are discussed. All these compounds are highly sensitive to moisture and hydrolyse to silica and the respective amine with the evolution of hydrogen. The compounds have been characterised by IR, 1H NMR, [1H]29Si NMR spectroscopic methods and CHN elemental analysis.