995 resultados para High sulfur coal
Resumo:
"IMSRP-IV."
Resumo:
Supplemental condensation of the author's Valuable fertilizer products from high sulfur coal stack gas.
Resumo:
The use of coal for fuel in place of oil and natural gas has been increasing in the United States. Typically, users store their reserves of coal outdoors in large piles and rainfall on the coal creates runoffs which may contain materials hazardous to the environment and the public's health. To study this hazard, rainfall on model coal piles was simulated, using deionized water and four coals of varying sulfur content. The simulated surface runoffs were collected during 9 rainfall simulations spaced 15 days apart. The runoffs were analyzed for 13 standard water quality parameters, extracted with organic solvents and then analyzed with capillary column GC/MS, and the extracts were tested for mutagenicity with the Ames Salmonella microsomal assay and for clastogenicity with Chinese hamster ovary cells.^ The runoffs from the high-sulfur coals and the lignite exhibited extremes of pH (acidity), specific conductance, chemical oxygen demand, and total suspended solids; the low-sulfur coal runoffs did not exhibit these extremes. Without treatment, effluents from these high-sulfur coals and lignite would not comply with federal water quality guidelines.^ Most extracts of the simulated surface runoffs contained at least 10 organic compounds including polycyclic aromatic hydrocarbons, their methyl and ethyl homologs, olefins, paraffins, and some terpenes. The concentrations of these compounds were generally less than 50 (mu)g/l in most extracts.^ Some of the extracts were weakly mutagenic and affected both a DNA-repair proficient and deficient Salmonella strain. The addition of S9 decreased the effect significantly. Extracts of runoffs from the low-sulfur coal were not mutagenic.^ All extracts were clastogenic. Extracts of runoffs from the high-sulfur coals were both clastogenic and cytotoxic; those from the low-sulfur coal and the lignite were less clastogenic and not cytotoxic. Clastogenicity occurred with and without S9 activation. Chromosomal lesions included gaps, breaks and exchanges. These data suggest a relationship between the sulfur content of a coal, its mutagenicity and also its clastogenicity.^ The runoffs from actual coal piles should be investigated for possible genotoxic effects in view of the data presented in this study.^
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.
Resumo:
The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Article 2120 of the Standard Specifications for Highway and Bridge Construction Series 2009 provides for a fuel adjustment factor to be applied to payments and partial payments for quantities of certain items of excavation work as the work is done, in accordance with the specification, when indicated in the contract documents. A Current Price Index (CPI), in dollars per gallon (liter), will be established by the DOT for each month. The CPI will be the price of No. 2 High Sulfur Diesel, as reported by Oil Price Information Service using the first weekday for the month and the average of all prices reported for Des Moines. The Base Price Index (BPI) for each contract will be the CPI in effect during the month previous to the month of the letting of that contract. If the contract has metric units, divide the Price Index ($/gal) by 3.785412 to obtain $/liter.
Resumo:
Article 2120 of the Standard Specifications for Highway and Bridge Construction Series 2009 provides for a fuel adjustment factor to be applied to payments and partial payments for quantities of certain items of excavation work as the work is done, in accordance with the specification, when indicated in the contract documents. A Current Price Index (CPI), in dollars per gallon (liter), will be established by the DOT for each month. The CPI will be the price of No. 2 High Sulfur Diesel, as reported by Oil Price Information Service using the first weekday for the month and the average of all prices reported for Des Moines. The Base Price Index (BPI) for each contract will be the CPI in effect during the month previous to the month of the letting of that contract. If the contract has metric units, divide the Price Index ($/gal) by 3.785412 to obtain $/liter.
Resumo:
The oxidation of sulphur compounds upon burning emits large quantities of SOx into the atmosphere. Therefore, there is growing interest in fast and accurate methods for analyzing sulphur content in fuels. The objective of this work was to compare four different methods of total sulphur determination in solid fuels. The methods used in this work were Eschka, Infrared, Thermal Conductivity Detection (TCD) and Ultraviolet Fluorescence Detection (UV). The preliminary results showed that TCD and UV methods (nonstandard methods for solid fuels) have similar precision to the infrared method (standard method) for high-sulphur coal samples.
Resumo:
The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.
Resumo:
O presente trabalho teve como objetivos avaliar os sinais clínicos, as concentrações do sulfeto de hidrogênio ruminal e as alterações anatomopatológicas associadas à intoxicação experimental por enxofre em bovinos. Foram utilizados dez bezerros mestiços leiteiros, sendo que quatro bovinos ingeriram ração sem sulfato de sódio (G1) e seis consumiram ração com sulfato de sódio (G2). Exames clínicos (temperatura retal, frequência cardíaca e respiratória e motricidade ruminal) e laboratoriais (hemograma, fibrinogênio, proteína plasmática, pH do fluido ruminal, concentração do sulfeto de hidrogênio ruminal, líquido cerebrospinal e histopatológico) foram realizados. A temperatura retal, frequência cardíaca, hemograma, fibrinogênio, proteína plasmática, pH do fluido ruminal e os valores do líquido cerebrospinal estavam dentro dos valores de referência para a espécie. Taquipnéia, hipomotricidade ruminal e elevados valores de sulfeto de hidrogênio ruminal foram observados nos bezerros do grupo G2. Um bezerro do grupo G2 apresentou sinais neurológicos e lesões histopatológicas de PEM. Dois animais de cada grupo foram eutanasiados. Lesões microscópicas foram observadas nos bezerros do G2. Histologicamente as alterações observadas foram necrose neuronal cortical e lesões hemorrágicas nos núcleos basais, tálamo, mesencéfalo, ponte e bulbo. O protocolo experimental constituído por uma dieta rica em carboidrato de alta fermentação, baixa quantidade de fibra efetiva e altos níveis de enxofre (0,52%) ocasionou alterações clinicas e histológicas e elevadas concentrações de sulfeto de hidrogênio ruminal compatíveis com quadro de intoxicação por enxofre.
Resumo:
The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.
Resumo:
Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. A first attempt to quantitatively validate AIRS SO2 retrievals with OMI data revealed a good correlation for high altitude SO2 clouds. Using estimates of the emitted SO2 at the time each paroxysm, we observe a correlation with the inter-paroxysm repose time. We therefore suggest that our data set supports the collapsing foam (CF) model [1] as driving mechanism for the paroxysmal events at the NSEC. Using VOLDORAD-based estimates of the erupted magma mass, we observe a large excess of SO2 in the eruption clouds. Satellite measurements indicate that SO2 emissions from Etnean lava fountains can reach the lower stratosphere and hence could pose a hazard to aviation. [1] Parfitt E.A (2004). A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134, 77-107.
Resumo:
We report S concentrations and relative proportions of (SO4)2- and S2- in OL- and CPX-hosted glass inclusions and in host glassy lapilli from Miocene basaltic hyaloclastites drilled north and south of Gran Canaria during ODP Leg 157. Compositions of glass inclusions and lapilli resemble those of subaerial Miocene shield basalts on Gran Canaria and comprise mafic to more evolved tholeiitic to alkali basalt and basanite (10.3-3.7 wt.% MgO, 44.5-56.9 wt.% SiO2). Glass inclusions fall into three groups based on their S concentrations: a high-sulfur group (1050 to 5810 ppm S), an intermediate-sulfur group (510 to 1740 ppm S), and a low-sulfur group (<500 ppm S). The most S-rich inclusions have the highest and nearly constant proportion of sulfur dissolved as sulfate determined by electron microprobe measurements of SKa peak shift. Their average S6+/S_total value is 0.75+/-0.09, unusually high for ocean island basalt magmas. The low-sulfur group inclusions have low S6+/S_total ratios (0.08+/-0.05), whereas intermediate sulfur group inclusions show a wide range of S6+/S_total (0.05-0.83). Glassy lapilli and their crystal-hosted glass inclusions with S concentrations of 50 to 1140 ppm S have very similar S6+/S_total ratios of 0.36+/-0.06 implying that sulfur degassing does not affect the proportion of (SO4)2- and S2- in the magma. The oxygen fugacities estimated from S6+/S_total ratios and from Fe3+/Fe2+ ratios in spinel inclusions range from NNO-1.1 to NNO+1.8. The origin of S-rich magmas is unclear. We discuss (1) partial melting of a mantle source at relatively oxidized fO2 conditions, and (2) magma contamination by seawater either directly or through magma interaction with seawater-altered Jurassic oceanic crust. The intermediate sulfur group inclusions represent undegassed or slightly degassed magmas similar to submarine OIB glasses, whereas the low-sulfur group inclusions are likely to have formed from magmas significantly degassed in near-surface reservoirs. Mixing of these degassed magmas with stored volatile-rich ones or volatile-rich magma replenishing the chamber filled by partially degassed magmas may produce hybrid melts with strongly varying S concentrations and S6+/S_total ratios.