842 resultados para High strength nitrogen removal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological nitrogen removal via the nitrite pathway in wastewater treatment is very important in Saving the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulation were carried out in a biofilm airlift reactor with autotrophic nitrifying biofilm. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.5 to 3.5 kg N/m3.d. Nitrite accumulation was stably achieved by the selective inhibition of nitrite oxidizers with free ammonia and dissolved oxygen limitation. Stable 100% conversion to nitrite could also be achieved even under the absence of free ammonia inhibition on nitrite oxidizers. Batch ammonium oxidation and nitrite oxidation with nitrite accumulating nitrifying biofilm showed that nitrite Oxidation was completely inhibited when free ammonia is higher than 0.2 mg N/L. However, nitrite oxidation activity was recovered as soon as the free ammonia concentration was below the threshold level when dissolved oxygen concentration was not the limiting factor. Fluorescence in situ hybridization analysis of cryosectioned nitrite accumulating nitrifying biofilm showed that the β-subclass of Proteobacteria, where ammonia oxidizers belong, was distributed outside the biofilm whereas the α-subclass of Proteobacteria, where nitrite oxidizers belong, was found mainly in the inner part of the biofilm. It is likely that dissolved oxygen deficiency or limitation in the inner part of the nitrifying biofilm, where nitrite oxidizers exist, is responsible for the complete shut down of the nitrite oxidizers activity under the absence of free ammonia inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m(3) m(-2) d(-1)) organic (0.26 kg COD m(-3) d(-1)) and ammonia-N (0.08 kg m(-3) d(-1)) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L(-1). Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L(-1). The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation demonstrates the capability of a bench-scale sequencing batch reactor (SBR) to biodegrade an inhibitory substrate at a high loading rate. A SBR loading rate of 3.12 kg phenol.m(-3)d(-1) (2.1 g COD.g(-1) MLVSS d(-1)) with a COD removal efficiency of 97% at a SRT of 4 days and a HRT of 10 hours was achieved; this rate was not reached before. The SBR was operated at 4 hours cycle, including 3 hours react phase. The synthetic wastewater of 1300 mg/L phenol was the sole carbon source. Oxygen uptake rates (OUR) were monitored in-situ at various stages of the SBR. The oxygen mass transfer coefficient, K(L)a, of 12.6 h(-1) was derived from respirometry. Use of respirometry in SBR aided the tracking of the soluble substrate through OUR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for reduced intrinsic weight of structures and vehicles in the transportation industry has made aluminium research of interest. Aluminium has properties that are favourable for structural engineering, including good strength-to-weight ratio, corrosion resistance and machinability. It can be easily recycled saving energy used in smelting as compared to steel. Its alloys can have ultimate tensile strength of up to 750 MPa, which is comparable to steel. Aluminium alloys are generally weldable, however welding of high strength alloys like the 7xxx series pose considerable challenges. This paper presents research on the weldability of high strength aluminium alloys, principally the 7xxx series. The weldability with various weld processes including MIG, TIG, and FSW, is discussed in addition to consideration of joint types, weld defects and recommendations for minimizing or preventing weld defects. Experimental research was carried out on 7025-T6 and AW-7020 alloys. Samples were welded, and weld cross sections utilized in weld metallurgy studies. Mechanical tests were carried out including hardness tests and tensile tests. In addition, testing was done for the presence of Al2O3 on exposed aluminium alloy. It was observed that at constant weld heat input using a pulsed MIG system, the welding speed had little or no effect on the weld hardness. However, the grain size increased as the filler wire feed rate, welding current and welding speed increased. High heat input resulted in lower hardness of the weld profile. Weld preheating was detrimental to AW- 7020 welds; however, artificial aging was beneficial. Acceptable welds were attained with pulsed MIG without the removal of the Al2O3 layer prior to welding. The Al2O3 oxide layer was found to have different compositions in different aluminium alloys. These findings contribute useful additional information to the knowledge base of aluminium welding. The application of the findings of this study in welding will help reduce weld cost and improve high strength aluminium structure productivity by removing the need for pre-weld cleaning. Better understanding of aluminium weld metallurgy equips weld engineers with information for better aluminium weld design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenge for wastewater professionals is to design and operate treatment processes that support human well being and are environmentally sensitive throughout the life-cycle. This research focuses on one technology for small-scale wastewater treatment: the vertical flow constructed wetland (VFCW), which is herein investigated for the capacity to remove ammonium and nitrate nitrogen from wastewater. Hydraulic regime and presence/absence of vegetation are the basis for a three-phase bench scale experiment to determine oxygen transfer and nitrogen fate in VFCWs. Results show that 90% NH4+-N removal is achieved in aerobic downflow columns, 60% NO3--N removal occurs in anaerobic upflow columns, and 60% removal of total nitrogen can be achieved in downflow-upflow in-series. The experimental results are studied further using a variably saturated flow and reactive transport model, which allows a mechanistic explanation of the fate and transport of oxygen and nitrogen. The model clarifies the mechanisms of oxygen transport and nitrogen consumption, and clarifies the need for readily biodegradable COD for denitrification. A VFCW is then compared to a horizontal flow constructed wetland (HFCW) for life cycle environmental impacts. High areal emissions of greenhouse gases from VFCWs compared to HFCWs are the driver for the study. The assessment shows that because a VFCW is only 25% of the volume of an HFCW designed for the same treatment quality, the VFCW has only 25-30% of HFCW impacts over 12 impact categories and 3 damage categories. Results show that impacts could be reduced by design improvements. Design recommendations are downflow wetlands for nitrification, upflow wetlands for denitrification, series wetlands for total nitrogen removal, hydraulic load of 142 L/m2d, 30 cm downflow wetland depth, 1.0 m upflow wetland depth, recycle, vegetation and medium-grained sand. These improvements will optimize nitrogen removal, minimize gaseous emissions, and reduce wetland material requirements, thus reducing environmental impact without sacrificing wastewater treatment quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although use of high-strength reinforced concrete (RC) jackets has become common practice worldwide, there are still two unresolved issues regarding the contribution of the original concrete and the effects of existing loads. Twelve RC-jacketed columns were tested with and without preloading under uniaxial compression. Tests showed the entire core to contribute to the capacity of the jacketed column, as long as adequate confinement is provided. Also, preloading does not adversely affect the capacity of the jacketed column, while it may increase its deformability, especially in square sections. Transverse reinforcement in the jacket directly improves ductility of the strengthened column, especially in circular sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel three-axis gradient set and RF resonator for orthopedic MRT has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an are of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 mu s, conforming closely with theoretical predictions. Preliminary images from the set are presented. (C) 1999 Academic Press.