996 resultados para High plains grasshopper.
Resumo:
Includes bibliographical references (p. 156-168).
Resumo:
This brief book is a history of the Lubbock Lake Landmark site, a nationally recognized archeological site located on the Texas southern High Plains on the north side of the city of Lubbock. The location has been the subject of intense investigations by archaeologists since 1939. Paul H. Carlson, a noted author and professor of history at Texas Tech University, states that his purpose was to go back through what John McPhee called "deep time" to show how the Lubbock Lake location was formed and was used by humans through time. He accomplishes this in five chapters.
Resumo:
The transport of anthropogenic and natural contaminants to public-supply wells was evaluated in a part of the High Plains aquifer near York, Nebraska, as part of the U.S. Geological Survey National Water-Quality Assessment Program. The aquifer in the Eastern High Plains regional study area is composed of Quaternary alluvial deposits typical of the High Plains aquifer in eastern Nebraska and Kansas, is an important water source for agricultural irrigation and public water supply, and is susceptible and vulnerable to contamination. A six-layer, steady-state ground-water flow model of the High Plains aquifer near York, Nebraska, was constructed and calibrated to average conditions for the time period from 1997 to 2001. The calibrated model and advective particle-tracking simulations were used to compute areas contributing recharge and travel times from recharge areas to selected public-supply wells. Model results indicate recharge from agricultural irrigation return flow and precipitation (about 89 percent of inflow) provides most of the ground-water inflow, whereas the majority of ground-water discharge is to pumping wells (about 78 percent of outflow). Particle-tracking results indicate areas contributing recharge to public-supply wells extend northwest because of the natural ground-water gradient from the northwest to the southeast across the study area. Particle-tracking simulations indicate most ground-water travel times from areas contributing recharge range from 20 to more than 100 years but that some ground water, especially that in the lower confined unit, originates at the upgradient model boundary instead of at the water table in the study area and has travel times of thousands of years.
Resumo:
The High Plains Ag Laboratory (HPAL) in Sidney, Nebraska is the dryland research site for the University of Nebraska located in the Panhandle. In addition to the typical small plot agriculture experiment areas, there is a significant dryland production area. There are a total of 718.5 acres in production, divided into 27 individual fields, ranging from the smallest unit at 19.7 acres to the largest at 36.7 acres. Within these fields there are presently seven different crop rotations, each with winter wheat as the base crop, including everything from the traditional wheat-fallow system to a continuous cropping system.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 30.
Resumo:
Bibliography: p. 35-36.
Resumo:
Bibliography: p. 32-34.
Resumo:
"June 2000"--Cover.
Resumo:
Mode of access: Internet.
Resumo:
Distributed to some depository libraries in microfiche.
Resumo:
The present study examined experimentally the phenological responses of a range of plant species to rises in temperature. We used the climate-change field protocol of the International Tundra Experiment (ITEX), which measures plant responses to warming of 1 to 2°C inside small open-topped chambers. The field study was established on the Bogong High Plains, Australia, in subalpine open heathlands; the most common treeless plant community on the Bogong High Plains. The study included areas burnt by fire in 2003, and therefore considers the interactive effects of warming and fire, which have rarely been studied in high mountain environments. From November 2003 to March 2006, various phenological phases were monitored inside and outside chambers during the snow-free periods. Warming resulted in earlier occurrence of key phenological events in 7 of the 14 species studied. Burning altered phenology in 9 of 10 species studied, with both earlier and later phenological changes depending on the species. There were no common phenological responses to warming or burning among species of the same family, growth form or flowering type (i.e. early or late-flowering species), when all phenological events were examined. The proportion of plants that formed flower buds was influenced by fire in half of the species studied. The findings support previous findings of ITEX and other warming experiments; that is, species respond individualistically to experimental warming. The inter-year variation in phenological response, the idiosyncratic nature of the responses to experimental warming among species, and an inherent resilience to fire, may result in community resilience to short-term climate change. In the first 3 years of experimental warming, phenological responses do not appear to be driving community-level change. Our findings emphasise the value of examining multiple species in climate-change studies.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Four broad regions of the western United States within which annual streamflows exhibit strong spatial coherence are identified using principal component analysis with a varimax rotation. Geographically, the four regions encompass the Pacific Northwest, Far West-Great Basin, Central Rockies-High Plains, and Northern Great Plains. These regions are really consistent with previously documented, descriptively derived streamflow regimes as well as with general atmospheric circulation and precipitation modes of variation. Collectively, the four regional components account for nearly 63 percent of the total annual variation in western U.S. streamflow. The time history of most principal component patterns exhibit little or no persistence.
Resumo:
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs.