933 resultados para High Total Solids
Resumo:
The main objectives of the present study were (a) to study the effects of the different combinations of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (BI) in co-culture with Streptococcus thermophilus (St) on the rate of acid development in milk and milk-whey mixture, and (b) the effect of the level of the total solids of the different bases on the acidification profile and viability of potential health-promoting microorganisms. The co-culture of St-Lr showed the lowest values V(max) in all bases; while the co-culture St-Bl had high t(Vmax) in milk and whey bases (12 and 10 g/100 g, respectively). Co-cultures St-La and St-Lb reached V(max) at pH 5.5, while St-Lr and St-Bl at pH 5.91. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the lowest value. All the products had slight development of acid during the storage period, and lowest values were observed when the St-Bl co-culture was employed. Lb, BI and St cultures had high counts at pH 4.5 in the three bases. The total solids affected the viability of Lb and La. The technological interest of these combinations is discussed in this article. (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. AM rights reserved.
Resumo:
The effects of municipal sewage sludge solids concentration, leaching microorganisms (Thiobacillus thiooxidans or Thiobacillus ferrooxidans) and the addition of energy source (SO or Fe(II)) on the bioleaching of metals from sewage sludge has been investigated under laboratory conditions using shake flasks. The results show that metal solubilization was better accomplished if additional energy source is supplemented to the microorganisms and that T. thiooxidans furnishes, in general, more adequate conditions for the bioleaching than T. ferrooxidans. At a total solids concentration of 70 g L-1 (originally present in the sludge) pH drop and ORP increase are attenuated, so metal solubilization is negatively affected. Tt was also demonstrated that if lead (Pb) solubilization is to be achieved, than a special combination of microorganism/energy source must be applied.
Resumo:
The purpose of this work was to study the influence of carrageenan level (X 1) and total solids content of yogurt/whey mixture (X 2) on starter culture fermentation time, physicochetnical properties (pH, fat and total solids contents) and rheological characteristics of lactic beverages using response surface methodology. The physicochemical characteristics of the lactic beverages were similar to those of commercial products. All beverages showed non-Newtonian fluid behavior with thixotropy and yield stress. The total solids content of the lactic beverages had a greater influence on the rheological behavior of these products than the carrageenan level. Wide ranges of consistency measurements were observed by varying the stabilizer level and total solids content.
Resumo:
Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3-22.7 %) and milk base heat treatment temperature (81.6-98.4°C) resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6-18.4°C) caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.
Resumo:
BACKGROUND With increasing demand for umbilical cord blood units (CBUs) with total nucleated cell (TNC) counts of more than 150 × 10(7) , preshipping assessment is mandatory. Umbilical cord blood processing requires aseptic techniques and laboratories with specific air quality and cleanliness. Our aim was to establish a fast and efficient method for determining TNC counts at the obstetric ward without exposing the CBU to the environment. STUDY DESIGN AND METHODS Data from a total of 151 cord blood donations at a single procurement site were included in this prospective study. We measured TNC counts in cord blood aliquots taken from the umbilical cord (TNCCord ), from placenta (TNCPlac ), and from a tubing segment of the sterile collection system (TNCTS ). TNC counts were compared to reference TNC counts in the CBU which were ascertained at the cord blood bank (TNCCBU ). RESULTS TNCTS counts (173 ± 33 × 10(7) cells; calculated for 1 unit) correlated fully with the TNCCBU reference counts (166 ± 33 × 10(7) cells, Pearson's r = 0.97, p < 0.0001). In contrast, TNCCord and TNCPlac counts were more disparate from the reference (r = 0.92 and r = 0.87, respectively). CONCLUSIONS A novel method of measuring TNC counts in tubing segments from the sterile cord blood collection system allows rapid and correct identification of CBUs with high cell numbers at the obstetric ward without exposing cells to the environment. This approach may contribute to cost efficacy as only CBUs with satisfactory TNC counts need to be shipped to the cord blood bank.
Resumo:
"April 24, 1911."
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.
Resumo:
Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
At head of title: DA-5No6-01-001, ORD Proj. 9109, DOFL Proj. 30100. TM-59-4.
Resumo:
The objective of this research was to evaluate the effects of 2 levels of raw milk somatic cell count (SCC) on the composition of Prato cheese and on the microbiological and sensory changes of Prato cheese throughout ripening. Two groups of dairy cows were selected to obtain low-SCC (<200,000 cells/mL) and high-SCC (>700,000 cells/mL) milks, which were used to manufacture 2 vats of cheese. The pasteurized milk was evaluated according to the pH, total solids, fat, total protein, lactose, standard plate count, coliforms at 45 degrees C, and Salmonella spp. The cheese composition was evaluated 2 d after manufacture. Lactic acid bacteria, psychrotrophic bacteria, and yeast and mold counts were carried out after 3, 9, 16, 32, and 51 d of storage. Salmonella spp., Listeria monocytogenes, and coagulase-positive Staphylococcus counts were carried out after 3, 32, and 51 d of storage. A 2 x 5 factorial design with 4 replications was performed. Sensory evaluation of the cheeses from low- and high-SCC milks was carried out for overall acceptance by using a 9-point hedonic scale after 8, 22, 35, 50, and 63 d of storage. The somatic cell levels used did not affect the total protein and salt: moisture contents of the cheeses. The pH and moisture content were higher and the clotting time was longer for cheeses from high-SCC milk. Both cheeses presented the absence of Salmonella spp. and L. monocytogenes, and the coagulase-positive Staphylococcus count was below 1 x 10(2) cfu/g throughout the storage time. The lactic acid bacteria count decreased significantly during the storage time for the cheeses from both low- and high-SCC milks, but at a faster rate for the cheese from high-SCC milk. Cheeses from high-SCC milk presented lower psychrotrophic bacteria counts and higher yeast and mold counts than cheeses from low- SCC milk. Cheeses from low- SCC milk showed better overall acceptance by the consumers. The lower overall acceptance of the cheeses from high-SCC milk may be associated with texture and flavor defects, probably caused by the higher proteolysis of these cheeses.
Resumo:
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged-the squeeze pan gap-implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 turn diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Cork processing wastewater is a very complex mixture of vegetal extracts and has, among other natural compounds, a very high content of phenolic/tannic colloidal matter that is responsible for severe environmental problems. In the present work, the concentration of this wastewater by nanofiltration was investigated with the aim of producing a cork tannin concentrate to be utilized in tanning. Permeation results showed that the permeate fluxes are controlled by both osmotic pressure and fouling/gel layer phenomena, leading to a rapid decrease of permeate fluxes with the concentration factor. The rejection coefficients to organic matter were higher than 95%, indicating that nanofiltration has a very good ability to concentrate the tannins and produce a permeate stream depleted from organic matter. The cork tannin concentrate obtained by nanofiltration and evaporation had total solids concentration of 34.8 g/l. The skins tanned by this concentrate were effectively converted to leather with a shrinking temperature of 7 degrees C.
Resumo:
O presente trabalho teve como objectivo a minimização do impacto ambiental do processo de curtume da pele de bovino. A indústria de curtumes transforma a pele, material putrescível, em couro, material nobre, termicamente estável e imputrescível. A transformação da pele em couro origina uma carga poluente apreciável quer quanto a efluentes líquidos quer quanto a resíduos sólidos. O fluxo produtivo da indústria de curtumes pode dividir-se em quatro sectores: ribeira, curtume, tinturaria e acabamento, sendo que os três primeiros geram efluentes líquidos com elevada carga poluente. Neste trabalho, foram avaliadas as fases do processo que geram efluentes líquidos: molho, caleiro, curtume e tinturaria. Na avaliação do processo do molho testou-se uma protease e uma lipase contra um molhante e um desengordurante tradicional, agentes químicos normalmente utilizados no molho mas menos biodegradáveis que as enzimas testadas. Salienta-se o bom resultado obtido quanto à eficiência do molho Na avaliação do processo de caleiro testaram-se várias alternativas no sentido da redução da quantidade de sulfureto de sódio utilizada e da minimização da carga poluente. Entre as alternativas, depilação por oxidação, depilação enzimática com e sem destruição do pêlo, elegeu-se a depilação enzimática sem destruição do pêlo que conduziu a resultados com menor impacto ambiental, nomeadamente a redução da % da quantidade de sulfureto de sódio, sendo a redução da carga poluente de 4,19 % de sulfureto, 32.80% de sólidos suspensos totais (SST),27.09% de sólidos totais (ST) e de 76.90% da carência química de oxigénio (CQO) no efluente de caleiro. No processo do curtume da pele é utilizado crómio como agente de curtume em cerca de 80% das peles tratadas, sendo este metal problemático em termos ambientais. No sentido de reduzir a quantidade de crómio utilizada no processo foi realizado um planeamento factorial onde as variáveis a estudar foram a concentração de crómio e a temperatura, tendo este como objectivo observar qual a quantidade mínima de crómio necessária para termos um produto final nas condições desejadas e gerando um menor impacto ambiental. Concluiu-se desenvolvendo um processo que mostra ser possível reduzir a quantidade de sal de crómio de 7% para 5%, além de ter um impacto ambiental claramente menos agressivo nos efluentes de curtume gerado. Este processo quando comparado com o processo tradicional permite a redução de 27% na CQO, 79% nos SST, 11% nos ST e 38% no teor de crómio Na avaliação do processo de tinturaria foi estudado um processo compacto contra o processo tradicional, tendo-se concluído pelo menor impacto ambiental do processo estudado, nomeadamente ao nível da redução do consumo de água e da carga poluente gerada. A comparação dos dois processos, no que respeita à carga poluente gerada, permitiu concluir por uma redução de 39% da CQO, 50% dos SST, e 12% dos ST quando aplicado o processo compacto Por fim foi feita uma avaliação do impacto ambiental do efluente global gerado pelos processos considerados com menor impacto ambiental contra o processo tradicional, normalmente aplicado na indústria. A aplicação do conjunto dos processos desenvolvidos, quando comparada com a aplicação do conjunto dos processos tradicionais, mostra uma redução de 1% no sulfureto, 40% na CQO, 60 % nos SST, 42 % no crómio e 11% nos ST, mostrando claramente que é possível reduzir a carga poluente da indústria de curtumes atuando no processo. Este trabalho mostrou a importância de atuar no processo para minimizar os custos de tratamento e mesmo de investimento dos efluentes da indústria de curtumes. Importa salientar que os processos desenvolvidos necessitam de validação a uma escala semi-industrial.
Resumo:
OBJECTIVE: To assess the prevalence of cardiovascular (CV) risk factors in Seychelles, a middle-income African country, and compare the cost-effectiveness of single-risk-factor management (treating individuals with arterial blood pressure >/= 140/90 mmHg and/or total serum cholesterol >/= 6.2 mmol/l) with that of management based on total CV risk (treating individuals with a total CV risk >/= 10% or >/= 20%).METHODS: CV risk factor prevalence and a CV risk prediction chart for Africa were used to estimate the 10-year risk of suffering a fatal or non-fatal CV event among individuals aged 40-64 years. These figures were used to compare single-risk-factor management with total risk management in terms of the number of people requiring treatment to avert one CV event and the number of events potentially averted over 10 years. Treatment for patients with high total CV risk (>/= 20%) was assumed to consist of a fixed-dose combination of several drugs (polypill). Cost analyses were limited to medication.FINDINGS: A total CV risk of >/= 10% and >/= 20% was found among 10.8% and 5.1% of individuals, respectively. With single-risk-factor management, 60% of adults would need to be treated and 157 cardiovascular events per 100 000 population would be averted per year, as opposed to 5% of adults and 92 events with total CV risk management. Management based on high total CV risk optimizes the balance between the number requiring treatment and the number of CV events averted.CONCLUSION: Total CV risk management is much more cost-effective than single-risk-factor management. These findings are relevant for all countries, but especially for those economically and demographically similar to Seychelles.