911 resultados para High Pressure Die-cast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of 1 wt-%Sr to AE42 results in an improvement in the tensile strength of the alloy at elevated temperatures of 150 and 175degreesC and an improvement in the constant load creep properties at 175degreesC. The improved elevated temperature tensile and creep strength of the alloy can be attributed to the presence of a strontium-containing phase in the microstructure of the alloy along with an increase in the stability of the microstructure of the alloy at high temperatures. (C) 2004 W. S. Maney Son Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al-Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of process variables on the quality of high-pressure die cast components was determined with the aid of in-cavity pressure sensors. In particular, the effects of set intensification pressure, delay time, and casting velocity have been investigated. The in-cavity pressure sensor has been used to determine how conditions within the die-cavity are related to the process parameters regulated by the die casting machine, and in turn the effect of variations in these parameters on the integrity of the final part. Porosity was found to decrease with increasing intensification pressure and increase with increasing casting velocity. The delay time before the application of the intensification pressure was not observed to have a significant effect on porosity levels. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure die casting is the most important production method for casting magnesium alloy components, and uniformity of appearance is an important criterion for acceptance of a component by customers. This paper investigates the influence of uniformity in surface appearance of diecast AZ91D plates on their corrosion behaviour. Through immersion, hydrogen collection and weight loss measurements it was found that corrosion is more likely to occur on the areas of the plate that appear to be darker, leading to a non-uniformly corroded surface. Microstructural analysis showed that the non-uniformity in appearance is related to a difference in the morphology and distribution of porosity across the surface of a diecast AZ91D plate. The darker areas of the surface are high in porosity which breaks the continuity of the beta-phase network and provides shortcut paths for corrosion from the surface to the interior of the casting. The brighter shiny areas of the surface are much less porous, with isolated pores being confined by corrosion resistant beta-precipitates thus reducing the corrosion rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-8Gd-2Y-Nd-0.3Zn (wt%) alloy was prepared by the high pressure die-cast technique. The microstructure, mechanical properties in the temperature range from room temperature to 573 K, and strengthening mechanism were investigated. It was confirmed that the Mg-Gd-based alloy with high Gd content exhibited outstanding die-cast character. The die-cast alloy was mainly composed of small cellular equiaxed dendrites and the matrix. The long lamellar-shaped stacking compound of Mg3X (X: Gd, Y, Nd, and Zn) and polygon-shaped.