979 resultados para Hierarchical stochastic learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This research was partially supported by the Latvian Science Foundation under grant No.02-86d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saliency detection is critical to many applications in computer vision by eliminating redundant backgrounds. The saliency detection approaches can be divided into two categories, i.e., top-down and bottom-up. Among them, bottom-up models have attracted more attention due to their simple mechanisms. However, many existing bottom-up models are not robust to crowded backgrounds because of missing salient regions within feedforward frameworks which is often not effective for complex scenes. We tackle these problems by modifying and extending a bottom-up saliency detection model through three phases, (1) constructing a hierarchical sequence of images from the perspective of entropy, (2) estimated mid-level cues are used as feedback information, (3) subsequently generating saliency maps by global context and local uniqueness in a graph-based framework. We also compare the proposed bottom-up model with state-of-the-art approaches on two benchmark datasets to evaluate its saliency detection performance. The experimental results demonstrate that the proposed bottom-up saliency detection approach is not only robust to both cluttered and clean scenes, but also able to obtain objects with different scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre-and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean leaxning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart grid technologies have given rise to a liberalised and decentralised electricity market, enabling energy providers and retailers to have a better understanding of the demand side and its response to pricing signals. This paper puts forward a reinforcement-learning-powered tool aiding an electricity retailer to define the tariff prices it offers, in a bid to optimise its retail strategy. In a competitive market, an energy retailer aims to simultaneously increase the number of contracted customers and its profit margin. We have abstracted the problem of deciding on a tariff price as faced by a retailer, as a semi-Markov decision problem (SMDP). A hierarchical reinforcement learning approach, MaxQ value function decomposition, is applied to solve the SMDP through interactions with the market. To evaluate our trading strategy, we developed a retailer agent (termed AstonTAC) that uses the proposed SMDP framework to act in an open multi-agent simulation environment, the Power Trading Agent Competition (Power TAC). An evaluation and analysis of the 2013 Power TAC finals show that AstonTAC successfully selects sell prices that attract as many customers as necessary to maximise the profit margin. Moreover, during the competition, AstonTAC was the only retailer agent performing well across all retail market settings.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Directly modeling the inherent hierarchy and shared structures of human behaviors, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of activity recognition. We argue that to robustly model and recognize complex human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in the movement trajectories. To this end, we propose the use of the HHMM, a rich stochastic model that has been recently extended to handle shared structures, for representing and recognizing a set of complex indoor activities. Furthermore, in the need of real-time recognition, we propose a Rao-Blackwellised particle filter (RBPF) that efficiently computes the filtering distribution at a constant time complexity for each new observation arrival. The main contributions of this paper lie in the application of the shared-structure HHMM, the estimation of the model's parameters at all levels simultaneously, and a construction of an RBPF approximate inference scheme. The experimental results in a real-world environment have confirmed our belief that directly modeling shared structures not only reduces computational cost, but also improves recognition accuracy when compared with the tree HHMM and the flat HMM.