984 resultados para Hierarchical modelling
Resumo:
Statistical analyses of health program participation seek to address a number of objectives compatible with the evaluation of demand for current resources. In this spirit, a spatial hierarchical model is developed for disentangling patterns in participation at the small area level, as a function of population-based demand and additional variation. For the former, a constrained gravity model is proposed to quantify factors associated with spatial choice and account for competition effects, for programs delivered by multiple clinics. The implications of gravity model misspecification within a mixed effects framework are also explored. The proposed model is applied to participation data from a no-fee mammography program in Brisbane, Australia. Attention is paid to the interpretation of various model outputs and their relevance for public health policy.
Resumo:
The term acclimation has been used with several connotations in the field of acclimatory physiology. An attempt has been made, in this paper, to define precisely the term “acclimation” for effective modelling of acclimatory processes. Acclimation is defined with respect to a specific variable, as cumulative experience gained by the organism when subjected to a step change in the environment. Experimental observations on a large number of variables in animals exposed to sustained stress, show that after initial deviation from the basal value (defined as “growth”), the variables tend to return to basal levels (defined as “decay”). This forms the basis for modelling biological responses in terms of their growth and decay. Hierarchical systems theory as presented by Mesarovic, Macko & Takahara (1970) facilitates modelling of complex and partially characterized systems. This theory, in conjunction with “growth-decay” analysis of biological variables, is used to model temperature regulating system in animals exposed to cold. This approach appears to be applicable at all levels of biological organization. Regulation of hormonal activity which forms a part of the temperature regulating system, and the relationship of the latter with the “energy” system of the animal of which it forms a part, are also effectively modelled by this approach. It is believed that this systematic approach would eliminate much of the current circular thinking in the area of acclimatory physiology.
Resumo:
Tese apresentada como requisito parcial para obtenção do grau de Doutor em Estatística e Gestão de Informação pelo Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa
Resumo:
There has been considerable scientific interest in personal exposure to ultrafine particles (UFP). In this study, the inhaled particle surface area doses and dose relative intensities in the tracheobronchial and alveolar regions of lungs were calculated using the measured 24-hour UFP time series of school children personal exposures for each recorded activity. Bayesian hierarchical modelling was used to determine mean doses and dose intensities for the various microenvironments. Analysis of measured personal exposures for 137 participating children from 25 schools in the Brisbane Metropolitan Area showed similar trends for all the participating children. Bayesian regression modelling was performed to calculate the daily proportion of children's total doses at different microenvironments. The proportion of alveolar doses in the total daily dose for \emph{home}, \emph{school}, \emph{commuting} and \emph{other} were 55.3\%, 35.3\%, 4.5\% and 5.0\%, respectively, with the \emph{home} microenvironment contributing a majority of children's total daily dose. Children's mean indoor dose was never higher than the outdoor's at any of the schools, indicating there were no persistent indoor particle sources in the classrooms during the measurements. Outdoor activities, eating/cooking at home and commuting were the three activities with the highest dose intensities. Personal exposure was more influenced by the ambient particle levels than immediate traffic.
Resumo:
Conservation planning and management programs typically assume relatively homogeneous ecological landscapes. Such “ecoregions” serve multiple purposes: they support assessments of competing environmental values, reveal priorities for allocating scarce resources, and guide effective on-ground actions such as the acquisition of a protected area and habitat restoration. Ecoregions have evolved from a history of organism–environment interactions, and are delineated at the scale or level of detail required to support planning. Depending on the delineation method, scale, or purpose, they have been described as provinces, zones, systems, land units, classes, facets, domains, subregions, and ecological, biological, biogeographical, or environmental regions. In each case, they are essential to the development of conservation strategies and are embedded in government policies at multiple scales.
Resumo:
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
While the system stabilizing function of reciprocity is widely acknowledged, much less attention has been paid to the argument that reciprocity might initiate social cooperation in the first place. This paper tests Gouldner’s early assumption that reciprocity may act as a ‘starting mechanism’ of social cooperation in consolidating societies. The empirical test scenario builds on unequal civic engagement between immigrants and nationals, as this engagement gap can be read as a lack of social cooperation in consolidating immigration societies. Empirical analyses using survey data on reciprocal norms and based on Bayesian hierarchical modelling lend support for Gouldner’s thesis, underlining thereby the relevance of reciprocity in today’s increasingly diverse societies: individual norms of altruistic reciprocity elevate immigrants’ propensity to volunteer, reducing thereby the engagement gap between immigrants and natives in the area of informal volunteering. In other words, compliance with altruistic reciprocity may trigger cooperation in social strata, where it is less likely to occur. The positive moderation of the informal engagement gap through altruistic reciprocity turns out to be most pronounced for immigrants who are least likely to engage in informal volunteering, meaning low, but also high educated immigrants.
Resumo:
The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.
Resumo:
In a context of intense competition, cooperative advertising between firms is critical. Accordingly, the objective of this article is to analyze the potential differentiated effect of advertising on two basic consumption patterns: individual products (i.e. hotel, restaurant) vs. bundle (i.e. hotel + restaurant). This research adds to the extant literature in that, for the first time, this potential differentiated effect is examined through a hierarchical modelling framework that reflects the way people make their decisions: first, they decide whether to visit or not a region; second, whether to purchase an advertised product in that region; and third, whether to buy products together or separately at the region. The empirical analysis, applied to a sample of 11,288 individuals, shows that the influence of advertising is positive for the decisions to visit and to purchase; however, when it comes to the joint or separate consumption, advertising has a differentiated effect: its impact is much greater on the joint alternative (“hotel + restaurant”) than the separate options (“hotel” and “restaurant”). Also, the variable distance moderates the advertising effect.
Resumo:
The use of a fully parametric Bayesian method for analysing single patient trials based on the notion of treatment 'preference' is described. This Bayesian hierarchical modelling approach allows for full parameter uncertainty, use of prior information and the modelling of individual and patient sub-group structures. It provides updated probabilistic results for individual patients, and groups of patients with the same medical condition, as they are sequentially enrolled into individualized trials using the same medication alternatives. Two clinically interpretable criteria for determining a patient's response are detailed and illustrated using data from a previously published paper under two different prior information scenarios. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.