917 resultados para Hierarchical bayesian space-time models
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
RESUMO: A estrutura demográfica portuguesa é marcada por baixas taxas de natalidade e mortalidade, onde a população idosa representa uma fatia cada vez mais representativa, fruto de uma maior longevidade. A incidência do cancro, na sua generalidade, é maior precisamente nessa classe etária. A par de outras doenças igualmente lesivas (e.g. cardiovasculares, degenerativas) cuja incidência aumenta com a idade, o cancro merece relevo. Estudos epidemiológicos apresentam o cancro como líder mundial na mortalidade. Em países desenvolvidos, o seu peso representa 25% do número total de óbitos, percentagem essa que mais que duplica noutros países. A obesidade, a baixa ingestão de frutas e vegetais, o sedentarismo, o consumo de tabaco e a ingestão de álcool, configuram-se como cinco dos fatores de risco presentes em 30% das mortes diagnosticadas por cancro. A nível mundial e, em particular no Sul de Portugal, os cancros do estômago, recto e cólon apresentam elevadas taxas de incidência e de mortalidade. Do ponto de vista estritamente económico, o cancro é a doença que mais recursos consome enquanto que do ponto de vista físico e psicológico é uma doença que não limita o seu raio de ação ao doente. O cancro é, portanto, uma doença sempre atual e cada vez mais presente, pois reflete os hábitos e o ambiente de uma sociedade, não obstante as características intrínsecas a cada indivíduo. A adoção de metodologia estatística aplicada à modelação de dados oncológicos é, sobretudo, valiosa e pertinente quando a informação é oriunda de Registos de Cancro de Base Populacional (RCBP). A pertinência é justificada pelo fato destes registos permitirem aferir numa população específica, o risco desta sofrer e/ou vir a sofrer de uma dada neoplasia. O peso que as neoplasias do estômago, cólon e recto assumem foi um dos elementos que motivou o presente estudo que tem por objetivo analisar tendências, projeções, sobrevivências relativas e a distribuição espacial destas neoplasias. Foram considerados neste estudo todos os casos diagnosticados no período 1998-2006, pelo RCBP da região sul de Portugal (ROR-Sul). O estudo descritivo inicial das taxas de incidência e da tendência em cada uma das referidas neoplasias teve como base uma única variável temporal - o ano de diagnóstico - também designada por período. Todavia, uma metodologia que contemple apenas uma única variável temporal é limitativa. No cancro, para além do período, a idade à data do diagnóstico e a coorte de nascimento, são variáveis temporais que poderão prestar um contributo adicional na caracterização das taxas de incidência. A relevância assumida por estas variáveis temporais justificou a sua inclusão numaclasse de modelos designada por modelos Idade-Período-Coorte (Age-Period-Cohort models - APC), utilizada na modelação das taxas de incidência para as neoplasias em estudo. Os referidos modelos permitem ultrapassar o problema de relações não lineares e/ou de mudanças súbitas na tendência linear das taxas. Nos modelos APC foram consideradas a abordagem clássica e a abordagem com recurso a funções suavizadoras. A modelação das taxas foi estratificada por sexo. Foram ainda estudados os respectivos submodelos (apenas com uma ou duas variáveis temporais). Conhecido o comportamento das taxas de incidência, uma questão subsequente prende-se com a sua projeção em períodos futuros. Porém, o efeito de mudanças estruturais na população, ao qual Portugal não é alheio, altera substancialmente o número esperado de casos futuros com cancro. Estimativas da incidência de cancro a nível mundial obtidas a partir de projeções demográficas apontam para um aumento de 25% dos casos de cancro nas próximas duas décadas. Embora a projeção da incidência esteja associada a alguma incerteza, as projeções auxiliam no planeamento de políticas de saúde para a afetação de recursos e permitem a avaliação de cenários e de intervenções que tenham como objetivo a redução do impacto do cancro. O desconhecimento de projeções da taxa de incidência destas neoplasias na área abrangida pelo ROR-Sul, levou à utilização de modelos de projeção que diferem entre si quanto à sua estrutura, linearidade (ou não) dos seus coeficientes e comportamento das taxas na série histórica de dados (e.g. crescente, decrescente ou estável). Os referidos modelos pautaram-se por duas abordagens: (i)modelos lineares no que concerne ao tempo e (ii) extrapolação de efeitos temporais identificados pelos modelos APC para períodos futuros. Foi feita a projeção das taxas de incidência para os anos de 2007 a 2010 tendo em conta o género, idade e neoplasia. É ainda apresentada uma estimativa do impacto económico destas neoplasias no período de projeção. Uma questão pertinente e habitual no contexto clínico e a que o presente estudo pretende dar resposta, reside em saber qual a contribuição da neoplasia em si para a sobrevivência do doente. Nesse sentido, a mortalidade por causa específica é habitualmente utilizada para estimar a mortalidade atribuível apenas ao cancro em estudo. Porém, existem muitas situações em que a causa de morte é desconhecida e, mesmo que esta informação esteja disponível através dos certificados de óbito, não é fácil distinguir os casos em que a principal causa de morte é devida ao cancro. A sobrevivência relativa surge como uma medida objetiva que não necessita do conhecimento da causa específica da morte para o seu cálculo e dar-nos-á uma estimativa da probabilidade de sobrevivência caso o cancro em análise, num cenário hipotético, seja a única causa de morte. Desconhecida a principal causa de morte nos casos diagnosticados com cancro no registo ROR-Sul, foi determinada a sobrevivência relativa para cada uma das neoplasias em estudo, para um período de follow-up de 5 anos, tendo em conta o sexo, a idade e cada uma das regiões que constituem o registo. Foi adotada uma análise por período e as abordagens convencional e por modelos. No epílogo deste estudo, é analisada a influência da variabilidade espaço-temporal nas taxas de incidência. O longo período de latência das doenças oncológicas, a dificuldade em identificar mudanças súbitas no comportamento das taxas, populações com dimensão e riscos reduzidos, são alguns dos elementos que dificultam a análise da variação temporal das taxas. Nalguns casos, estas variações podem ser reflexo de flutuações aleatórias. O efeito da componente temporal aferida pelos modelos APC dá-nos um retrato incompleto da incidência do cancro. A etiologia desta doença, quando conhecida, está associada com alguma frequência a fatores de risco tais como condições socioeconómicas, hábitos alimentares e estilo de vida, atividade profissional, localização geográfica e componente genética. O “contributo”, dos fatores de risco é, por vezes, determinante e não deve ser ignorado. Surge, assim, a necessidade em complementar o estudo temporal das taxas com uma abordagem de cariz espacial. Assim, procurar-se-á aferir se as variações nas taxas de incidência observadas entre os concelhos inseridos na área do registo ROR-Sul poderiam ser explicadas quer pela variabilidade temporal e geográfica quer por fatores socioeconómicos ou, ainda, pelos desiguais estilos de vida. Foram utilizados os Modelos Bayesianos Hierárquicos Espaço-Temporais com o objetivo de identificar tendências espaço-temporais nas taxas de incidência bem como quantificar alguns fatores de risco ajustados à influência simultânea da região e do tempo. Os resultados obtidos pela implementação de todas estas metodologias considera-se ser uma mais valia para o conhecimento destas neoplasias em Portugal.------------ABSTRACT: mortality rates, with the elderly being an increasingly representative sector of the population, mainly due to greater longevity. The incidence of cancer, in general, is greater precisely in that age group. Alongside with other equally damaging diseases (e.g. cardiovascular,degenerative), whose incidence rates increases with age, cancer is of special note. In epidemiological studies, cancer is the global leader in mortality. In developed countries its weight represents 25% of the total number of deaths, with this percentage being doubled in other countries. Obesity, a reduce consumption of fruit and vegetables, physical inactivity, smoking and alcohol consumption, are the five risk factors present in 30% of deaths due to cancer. Globally, and in particular in the South of Portugal, the stomach, rectum and colon cancer have high incidence and mortality rates. From a strictly economic perspective, cancer is the disease that consumes more resources, while from a physical and psychological point of view, it is a disease that is not limited to the patient. Cancer is therefore na up to date disease and one of increased importance, since it reflects the habits and the environment of a society, regardless the intrinsic characteristics of each individual. The adoption of statistical methodology applied to cancer data modelling is especially valuable and relevant when the information comes from population-based cancer registries (PBCR). In such cases, these registries allow for the assessment of the risk and the suffering associated to a given neoplasm in a specific population. The weight that stomach, colon and rectum cancers assume in Portugal was one of the motivations of the present study, that focus on analyzing trends, projections, relative survival and spatial distribution of these neoplasms. The data considered in this study, are all cases diagnosed between 1998 and 2006, by the PBCR of Portugal, ROR-Sul.Only year of diagnosis, also called period, was the only time variable considered in the initial descriptive analysis of the incidence rates and trends for each of the three neoplasms considered. However, a methodology that only considers one single time variable will probably fall short on the conclusions that could be drawn from the data under study. In cancer, apart from the variable period, the age at diagnosis and the birth cohort are also temporal variables and may provide an additional contribution to the characterization of the incidence. The relevance assumed by these temporal variables justified its inclusion in a class of models called Age-Period-Cohort models (APC). This class of models was used for the analysis of the incidence rates of the three cancers under study. APC models allow to model nonlinearity and/or sudden changes in linear relationships of rate trends. Two approaches of APC models were considered: the classical and the one using smoothing functions. The models were stratified by gender and, when justified, further studies explored other sub-models where only one or two temporal variables were considered. After the analysis of the incidence rates, a subsequent goal is related to their projections in future periods. Although the effect of structural changes in the population, of which Portugal is not oblivious, may substantially change the expected number of future cancer cases, the results of these projections could help planning health policies with the proper allocation of resources, allowing for the evaluation of scenarios and interventions that aim to reduce the impact of cancer in a population. Worth noting that cancer incidence worldwide obtained from demographic projections point out to an increase of 25% of cancer cases in the next two decades. The lack of projections of incidence rates of the three cancers under study in the area covered by ROR-Sul, led us to use a variety of forecasting models that differ in the nature and structure. For example, linearity or nonlinearity in their coefficients and the trend of the incidence rates in historical data series (e.g. increasing, decreasing or stable).The models followed two approaches: (i) linear models regarding time and (ii) extrapolation of temporal effects identified by the APC models for future periods. The study provide incidence rates projections and the numbers of newly diagnosed cases for the year, 2007 to 2010, taking into account gender, age and the type of cancer. In addition, an estimate of the economic impact of these neoplasms is presented for the projection period considered. This research also try to address a relevant and common clinical question in these type of studies, regarding the contribution of the type of cancer to the patient survival. In such studies, the primary cause of death is commonly used to estimate the mortality specifically due to the cancer. However, there are many situations in which the cause of death is unknown, or, even if this information is available through the death certificates, it is not easy to distinguish the cases where the primary cause of death is the cancer. With this in mind, the relative survival is an alternative measure that does not need the knowledge of the specific cause of death to be calculated. This estimate will represent the survival probability in the hypothetical scenario of a certain cancer be the only cause of death. For the patients with unknown cause of death that were diagnosed with cancer in the ROR-Sul, the relative survival was calculated for each of the cancers under study, for a follow-up period of 5 years, considering gender, age and each one of the regions that are part the registry. A period analysis was undertaken, considering both the conventional and the model approaches. In final part of this study, we analyzed the influence of space-time variability in the incidence rates. The long latency period of oncologic diseases, the difficulty in identifying subtle changes in the rates behavior, populations of reduced size and low risk are some of the elements that can be a challenge in the analysis of temporal variations in rates, that, in some cases, can reflect simple random fluctuations. The effect of the temporal component measured by the APC models gives an incomplete picture of the cancer incidence. The etiology of this disease, when known, is frequently associated to risk factors such as socioeconomic conditions, eating habits and lifestyle, occupation, geographic location and genetic component. The "contribution"of such risk factors is sometimes decisive in the evolution of the disease and should not be ignored. Therefore, there was the need to consider an additional approach in this study, one of spatial nature, addressing the fact that changes in incidence rates observed in the ROR-Sul area, could be explained either by temporal and geographical variability or by unequal socio-economic or lifestyle factors. Thus, Bayesian hierarchical space-time models were used with the purpose of identifying space-time trends in incidence rates together with the the analysis of the effect of the risk factors considered in the study. The results obtained and the implementation of all these methodologies are considered to be an added value to the knowledge of these neoplasms in Portugal.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.
Resumo:
Genes affect not only the behavior and fitness of their carriers but also that of other individuals. According to Hamilton's rule, whether a mutant gene will spread in the gene pool depends on the effects of its carrier on the fitness of all individuals in the population, each weighted by its relatedness to the carrier. However, social behaviors may affect not only recipients living in the generation of the actor but also individuals living in subsequent generations. In this note, I evaluate space-time relatedness coefficients for localized dispersal. These relatedness coefficients weight the selection pressures on long-lasting behaviors, which stem from a multigenerational gap between phenotypic expression by actors and the resulting environmental feedback on the fitness of recipients. Explicit values of space-time relatedness coefficients reveal that they can be surprisingly large for typical dispersal rates, even for hundreds of generations in the future.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
We present an analysis of the space-time dynamics of oceanic sea states exploiting stereo imaging techniques. In particular, a novel Wave Acquisition Stereo System (WASS) has been developed and deployed at the oceanographic tower Acqua Alta in the Northern Adriatic Sea, off the Venice coast in Italy. The analysis of WASS video measurements yields accurate estimates of the oceanic sea state dynamics, the associated directional spectra and wave surface statistics that agree well with theoretical models. Finally, we show that a space-time extreme, defined as the expected largest surface wave height over an area, is considerably larger than the maximum crest observed in time at a point, in agreement with theoretical predictions.