885 resultados para Hidden variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work evaluates empirically the Taylor rule for the US and Brazil using Kalman Filter and Markov-Switching Regimes. We show that the parameters of the rule change significantly with variations in both output and output gap proxies, considering hidden variables and states. Such conclusions call naturally for robust optimal monetary rules. We also show that Brazil and US have very contrasting parameters, first because Brazil presents time-varying intercept, second because of the rigidity in the parameters of the Brazilian Taylor rule, regardless the output gap proxy, data frequency or sample data. Finally, we show that the long-run inflation parameter of the US Taylor rule is less than one in many periods, contrasting strongly with Orphanides (forthcoming) and Clarida, Gal´i and Gertler (2000), and the same happens with Brazilian monthly data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore in detail the possibility of generating a pair-coherent state in the nondegenerate parametric oscillator when decoherence is included. Such states are predicted in the transient regime in parametric oscillation where the pump mode is adiabatically eliminated. Two specific signatures are examined to indicate whether the state of interest has been generated, the Schrodinger cat state-like signatures, and the fidelity. Solutions in a transient regime reveal interference fringes which are indicative of the formation of a Schrodinger cat state. The fidelity indicates the purity of our prepared state compared with the ideal pair-coherent state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By exhibiting a violation of a novel form of the Bell-CHSH inequality, Żukowski has recently established that the quantum correlations exploited in the standard perfect teleportation protocol cannot be recovered by any local hidden variables model. In the case of imperfect teleportation, we show that a violation of a generalized form of Żukowski's teleportation inequality can only occur if the channel state, considered by itself, already violates a Bell-CHSH inequality. On the other hand, the fact that the channel state violates a Bell-CHSH inequality is not sufficient to imply a violation of Żukowski's teleportation inequality (or any of its generalizations). The implication does hold, however, if the fidelity of the teleportation exceeds ≈ 0.90. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the results of six years of research in engineering education, in the application of the European Higher Education Area (EHEA) to improve the performance of the students in the subject Analysis of Circuits of Telecommunication Engineering, are analysed taking into consideration the fact that there would be hidden variables that both separate students into subgroups and show the connection among several basic subjects such as Analysis of Circuits (AC) and Mathematics (Math). The discovery of these variables would help us to explain the characteristics of the students through the teaching and learning methodology, and would show that there are some characteristics that instructors do not take into account but that are of paramount importance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general non-linear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fundamental problem faced by noninvasive neuroimaging techniques such as EEG/MEG1 is to elucidate functionally important aspects of the microscopic neuronal network dynamics from macroscopic aggregate measurements. Due to the mixing of the activities of large neuronal populations in the observed macroscopic aggregate, recovering the underlying network that generates the signal in the absence of any additional information represents a considerable challenge. Recent MEG studies have shown that macroscopic measurements contain sufficient information to allow the differentiation between patterns of activity, which are likely to represent different stimulus-specific collective modes in the underlying network (Hadjipapas, A., Adjamian, P., Swettenham, J.B., Holliday, I.E., Barnes, G.R., 2007. Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. NeuroImage 35, 518–530). The next question arising in this context is whether aspects of collective network activity can be recovered from a macroscopic aggregate signal. We propose that this issue is most appropriately addressed if MEG/EEG signals are to be viewed as macroscopic aggregates arising from networks of coupled systems as opposed to aggregates across a mass of largely independent neural systems. We show that collective modes arising in a network of simulated coupled systems can be indeed recovered from the macroscopic aggregate. Moreover, we show that nonlinear state space methods yield a good approximation of the number of effective degrees of freedom in the network. Importantly, information about hidden variables, which do not directly contribute to the aggregate signal, can also be recovered. Finally, this theoretical framework can be applied to experimental MEG/EEG data in the future, enabling the inference of state dependent changes in the degree of local synchrony in the underlying network.