6 resultados para Hexamine
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
An eight-month-old Labrador Retriever was presented with urinary incontinence and haematuria. Recent history suggested that the dog had access to solid fuel hexamine tablets, ingesting a dose of 6g/kg. Clinical signs, laboratory investigation and ultrasonographic findings were supportive of chemically-induced cystitis and a diagnosis of suspected hexamine intoxication was made. The dog recovered uneventfully and it is unlikely that the insult will be carcinogenic.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg2+, Mn2+, Ca2+, Sr2+ and Ba2+, while it is changed compared to the Mg2+-induced conformation in the presence of other divalent metal ions, Cd2+ for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb2+, while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb2+ cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin–loop substrate and yeast tRNAPhe. We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn2+ is generally among the strongest RNA binders.
Resumo:
DNA serves as a target molecule for several types of enzymes and may assume a wide variety of structural motifs depending upon the local sequence. The BssHII restriction site (GC)3 resides in a 9bp region of alternating pyrimidine and purine residues within the &phis;X174 genome. Such sequences are known to demonstrate non-canonical helical behavior under the appropriate conditions. The kinetics of BssHII cleavage was investigated in supercoiled and linear plasmid DNA, and in a 323bp DNA fragment obtained via amplification of &phis;X174. The rate of enzyme cleavage was enhanced in the supercoiled form and in the presence of 50μM cobalt hexamine. Similarly, cobalt hexamine was also found to enhance TaqI activity directly adjacent to the (GC)3 region. ^ Initial DNA polymerase I binding studies (including a gel mobility shift assay and a protection assay) indicated a notable interaction between DNA polymerase I and the BssHII site. An in-depth study revealed that equilibrium binding of DNA polymerase I to the T7 RNA polymerase promoter was comparable to that of the (GC)3 site, however the strongest interaction was observed with a cruciform containing region. Increasing the ionic strength of the solution environment, including the addition of DNA polymerase I reaction buffer significantly decreased the equilibrium dissociation constant values. ^ It is suggested that the region within or around the BssHII site experiences a conformational change generating a novel structure under the influence of supercoiled tension or 50μM cobalt hexamine. It is proposed that this transition may enhance enzyme activity and binding by providing an initial enzyme-docking site—the rate-limiting step in restriction enzyme kinetics. The high binding potential of DNA polymerase I for each of the motifs described, is hypothesized to be due to recognition of the structural DNA anomalies by the 3′–5′ exonuclease domain. ^
Resumo:
Alternating (CG) sequences form an unusual conformation in the presence of cobalt hexamine. The oligomer, BZ-IV, containing a (CG)4 run (BZ-IV sequence: 5'TCGACGCGCGCGATCAGTCA- 3') was inserted at the Sal I site of the Escherichia coli pGEM-5zf(+) plasmid producing the plasmid pCW001. Hinf I digestion of pCW001 produced a 367 base pair (bp) fragment containing the BZ-IV insert. For controls, the 452 bp Hinf I fragment from the pCW001 plasmid and the 347 bp Hinf I fragment from the pGEM plasmid were used. Digestion studies were performed using the restriction enzymes Bgl I, EcoRV, Hha I, Mbo I, Not I, Pst I, and Taq I and methylation studies were performed using dam methylase. Data were obtained by beta scanning or ethidium bromide staining the polyacrylamide gels of the digestion or methylation products. The results show that in the presence of 100 uM cobalt hexamine, in which BZ-IV takes on a non-B-Z-structure, the enzyme's ability to react and cleave its recognition site is enhanced.