997 resultados para Heterotrophic flagellates


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Programa de oceanografía

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analysis was made of composition and content of nutrients, salts, particulate and dissolved organic matter, and various plankton groups in a series of samples collected by a 140-liter sampling bottle to depth up to 150 m at 4 equatorial stations between 97° and 154°W. Large and small phytoplankton, bacteria (aggregated and dispersed), heterotrophic flagellates, infusorians, radiolarians, foraminifers, fine filter-feeders, small and large, mostly herbivorous copepods, cyclopoids, predatory calanoids, and other predators were investigated separately. Trophic relations between these elements are established from personal and published data, and rate of their metabolism and some other physiological parameters are determined. Such functional characteristics as extent of satisfaction of food requirements of organisms belonging to various trophic groups, intensity of trophic relations, balance between production and consumption by individual elements of the community, ecological efficiency, and net and specific production of the groups distinguished, of individual trophic levels, of total zooplankton, and of the community as a whole are calculated. Variations of these characteristics along the equator with decreasing upwelling intensity are examined and their possible causes and mechanisms are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic of early spring nanoprotozoa was investigated in three characteristic water masses of the Southern Ocean: the Marginal Ice Zone, the intermediate waters of the Antarctic Circumpolar Current and the Polar Frontal Zone. Biomass and feeding activities of nanoprotozoa were measured, as well as the biomass of their potential prey-bacteria and phototrophic flagellates-on the 6°W meridian in the Southern Ocean along three repetitive transects between 47 and 60° South from October to November 1992. On average, nanoprotozooplankton biomass accounted for 77% of the combined biomass of bacteria and phototrophic flagellates, and was dominated by dinoflagellates and flagellates smaller than 5 µm. As a general trend, low protozoan biomass of 2 mg C/m**3 was typical of the ice covered area, while significantly higher biomasses culminating at 15 mg C/m**3 were recorded at the Polar Front. Biomasses of bacteria and total phytoplankton were distributed accordingly, with larger values at the Polar Front. Phototrophic flagellates did not show any geographical trend. No seasonal trend could be identified in the Marginal Ice Zone and in the intermediate waters of the Antarctic Circumpolar Current. On the other hand, at the Polar Front region a three-fold increase was observed within a 2-month period for nanoprotozooplankton biomass. Such a biomass increase was also detected for bacterioplankton and total phytoplankton biomass. Half-saturation constants and maximum specific ingestion of nanoprotozoan taxons feeding on bacteria and phototrophic flagellates were determined using the technique of fluorescent labelled bacteria (FLB) and algae (FLA) over a large range of prey concentrations. Maximum ingestion rates ranged between 0.002 and 0.015/h for bactivorous nanoprotozoa and heterotrophic flagellates larger than 5 µm feeding on phototrophic flagellates. The markedly high maximum ingestion rates of 0.4/h characterising nanophytoplankton ingestion by dinoflagellates evidenced the strong ability of dinoflagellates for feeding on nanophytoplankton. Daily ingestion rates were calculated from nanoprotozoan grazing parameters and carbon biomass of prey and predators. This indicated that nanoprotozoa ingestion of daily bacterioplankton and phytoplankton production in early spring ranged from 32 to 40%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of materials collected in June-August 1994 characteristic data on microplankton were gathered in three biotopes of the eastern shelf of the Bering Sea: open shelf (coastal zone), the harbor, and the salt lagoon of Saint Paul Island (Pribiof Islands). The following parameters of microplanktonic communities were analyzed: abundance, biomass, and production of autotrophic picoplankton (picoalgae and cyanobacteria); abundance, biomass, growth rate constant, and production of bacterioplankton; role of filiform bacteria in bacterioplankton; species composition of heterotrophic flagellates and ciliates, their abundance, and biomass. Growth rates and consumption rates of picoplankton and bacterioplankton by heterotrophic nano- and microplankton were estimated in the experiments using the dilution method. Temporal dynamics of all structural and functional parameters of microplankton were analyzed. The minor role of autotrophic picoplankton and significant role of bacterioplankton as well as heterotrophic nano- and microplankton in planktonic communities of studied biotopes during summer months was shown. During certain periods, bacterial biomass was as high as 50-65% of phytoplankton biomass, and production of bacteria was as high as 20-40% of primary production. In the middle of the season biomass of nano- and microheterotrophic organisms in different biotopes exceeded biomass of mesozooplankton 2-10 times. Average consumption of bacterial production by nano- and microplankton during the period of observations was 85-94%.