990 resultados para Heterogeneous reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric models suggest that the reduction of Hg(II) to Hg(O) by S(W) prolongs the residence time of mercury. The redox reaction was investigated both in the aqueous phase (where the reductant is sulfite) and on particulate matter (where the reductant in SO2(g)). In both cases, one of the ultimate products is HgS. A mechanism is proposed involving formation of Hg(O) followed by mercury-induced disproportionation of SO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die heterogenen Reaktionen von N2O5 bzw. NO3 auf mineralischen Staubpartikeln wurden untersucht, um deren Einfluss auf den Abbau atmosphärischer Stickoxide (NOx) sowie auf die chemische Veränderung der Staubpartikel während ihres Transportes durch die Atmosphäre besser verstehen zu können. Die experimentellen Studien wurden bei Atmosphärendruck, Raumtemperatur und unterschiedlichen relativen Luftfeuchten durchgeführt. Der Aufnahmekoeffizient γ(N2O5) von N2O5 auf dispergiertem Staub aus der Sahara wurde zu 0,020 ± 0,002 (1σ) bestimmt, unabhängig von der relativen Feuchte (0 - 67 %) sowie der N2O5-Konzentration (5x1011 - 3x1013 Moleküle cm-3).rnDie Analyse der Reaktionsprodukte in der Gasphase sowie auf der Partikeloberfläche führt zu der Annahme, dass N2O5 auf der Staubpartikeloberfläche zu Nitrat hydrolysiert wird. Es konnte kein Einfluss der relativen Feuchte auf den Aufnahmekoeffizienten ermittelt werden, was durch das vorhandene interlamellare Wasser, welches bis zu 10 % der Partikelmasse betragen kann, erklärbar ist. Der gemessene Wert des Aufnahmekoeffizienten ist unabhängig von der Eingangs-N2O5-Konzentration, was sich über die sehr große innere Oberfläche der Partikel erklären lässt. Dennoch ließ sich durch eine vorherige Konditionierung der Partikel mit gasförmigem HNO3, was eine Nitratanreicherung an der Oberfläche bewirkt, die Effizienz der N2O5-Aufnahme auf die Staubpartikel reduzieren. Zusätzliche Studien befassten sich mit der Bestimmung des Aufnahmekoeffizienten von N2O5 auf Illit-Partikeln und auf Teststaub aus Arizona. Bei einer relativen Luftfeuchte von 0 % wurden für γ(N2O5) Werte von 0,084 ± 0,019 (1σ) für Illit und von 0,010 ± 0,001 (1σ) für Arizona Teststaub ermittelt.rnUnter Anwendung einer neuartigen Messmethode, die auf der zeitgleichen Messung der Konzentrationsabnahme von NO3 und N2O5 relativ zueinander beruht, wurde das Verhältnis γ(NO3)/γ(N2O5) der Aufnahmekoeffizienten von NO3 und N2O5 auf Saharastaub zu 0,9 ± 0,4 (1σ) bestimmt. Dieser Wert war unabhängig von der relativen Feuchte, den NO3- und N2O5-Konzentrationen sowie der Reaktionszeit, obwohl eine Oberflächendeaktivierung für beide Spurenstoffe beobachtet wurde.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Surface Renewal Theory (SRT) is one of the most unfamiliar models in order to characterize fluid-fluid and fluid-fluid-solid reactions, which are of considerable industrial and academicals importance. In the present work, an approach to the resolution of the SRT model by numerical methods is presented, enabling the visualization of the influence of different variables which control the heterogeneous overall process. Its use in a classroom allowed the students to reach a great understanding of the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasound has been widely used by chemists to enhance yields as well as rates of homogeneous as well as heterogeneous chemical reactions. The effect of ultrasound on the course of chemical reactions is mediated through cavitation bubbles it generates. High temperatures and pressures are attained inside the cavitating bubbles when they collapse. The extreme conditions so generated lead to the formation of reactive intermediates, e.g., free radiacls, inside the bubbles, which cause chemical reactions to occur when they enter the surrounding liquid. This is the mechanism through which ultrasound influences the path of homogeneous reactions. The cavitation bubbles collapse asymmetrically in the vicinity of solids, e.g., catalyst particles. Asymmetric collapse lead to formation of high speed microjets. The microjets can enhance transport rates, the increase surface area through pitting as well as particle fragmentation through collisions. Both can alter the rates of heterogeneous reaction rates. It however appears that these effects do not exhaust the scope of the influence of ultrasound on heterogeneous reactions. Modelling and quantitative prediction of the effect of ultrasound on chemical reactions is however at a stage of infancy as the phenomena are complex. Only a few examples of modelling exist in literature. Apart from this, reactor design and scaleup pose significant problems. Thus sonochemical reaction engineering offers large scope for research and development efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the Euler-Euler (E-E) and Euler-Lagrange (E-L) models designed for the same chemical mechanism of heterogeneous reactions were used to predict the performance of a typical sudden-expanding coal combustor. The results showed that the current E-E model underestimated the coal burnout rate because the particle temperature fluctuation on char combustion is not adequately considered. A comparison of the E-E and E-L simulations showed the underestimation of heterogeneous chemical reaction rates by the E-E model. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manganese(III) complexes of tetra-anionic and tetra-cationic porphyrins have been immobilised on counter-charged, surface-modified silica supports and on organic ion-exchange resins. The reactions of these supported manganese(III) porphyrin systems and analogous uncharged homogeneous systems have been examined using cyclooctene and (E)- and (Z)-4- methylpent-2-ene epoxidations, with iodosylbenzene (PhIO) as the oxygen donor.Comparisons using the manganese porphyrin systems as catalysts for the epoxidation of cyclooctene in acetonitrile reveal that, in low turnover reactions (maximum 136 turnovers), they all give an essentially quantitative yield of epoxide although the heterogeneous reactions are significantly slower than the homogeneous analogues. In large scale repeat-use experiments, however, the supported catalysts are clearly superior, giving markedly better yields.The epoxidations of (E)- and (Z)-4- methylpent-2-ene with all the catalysts show a very high stereoretention, with the (Z)-alkene reacting faster than the (E)-isomer. The sterically hindered manganese(III) 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin (MnTDCSPP) shows the highest selectivity for the (Z)-isomer; by contrast the supported manganese(III) 5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(trimethylammonio)phenyl]porphyrin on Dowex (MnTF(4)TMAPP-Dowex) reacts with the two alkenes at effectively the same rate.The mechanism of the epoxidations and the influence of the porphyrin ligand and support on the substrate selectivity are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs). In this work the corrosion behaviour of aluminium alloy 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. SEM observations have shown that intermetallics with the same nominal composition present heterogeneous reaction rates, and that both types of coarse IMs normally found in the AA 2024-T3 microstructure corrode. Moreover, EDS analyses have shown important compositional changes in the corroded IMs, evidencing the selective corrosion of their more active constituents and the onset of an intense oxygen peak, irrespective to the IM nature. TEM/EDS observations on non-corroded samples have evidenced the heterogeneous composition within the IMs. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, have evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte. © 2009 by NACE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)