949 resultados para Heterogeneous multiprocessors
Resumo:
A preliminary version of this paper appeared in Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 239–248.
Resumo:
Consider the problem of determining a task-toprocessor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct kinds of processors. We propose a polynomialtime approximation scheme (PTAS) for this problem. It offers the following guarantee: for a given task set and a given platform, if there exists a feasible task-to-processor assignment, then given an input parameter, ϵ, our PTAS succeeds, in polynomial time, in finding such a feasible task-to-processor assignment on a platform in which each processor is 1+3ϵ times faster. In the simulations, our PTAS outperforms the state-of-the-art PTAS [1] and also for the vast majority of task sets, it requires significantly smaller processor speedup than (its upper bound of) 1+3ϵ for successfully determining a feasible task-to-processor assignment.
Resumo:
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different types of processors — such a platform is referred to as two-type platform. We present two linearithmic timecomplexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 1+α/times faster, where 0<α≤1. The parameter α is a property of the task set — it is the maximum utilization of any task which is less than or equal to 1.
Resumo:
Consider the problem of scheduling a set of implicitdeadline sporadic tasks on a heterogeneous multiprocessor so as to meet all deadlines. Tasks cannot migrate and the platform is restricted in that each processor is either of type-1 or type-2 (with each task characterized by a different speed of execution upon each type of processor). We present an algorithm for this problem with a timecomplexity of O(n·m), where n is the number of tasks and m is the number of processors. It offers the guarantee that if a task set can be scheduled by any non-migrative algorithm to meet deadlines then our algorithm meets deadlines as well if given processors twice as fast. Although this result is proven for only a restricted heterogeneous multiprocessor, we consider it significant for being the first realtime scheduling algorithm to use a low-complexity binpacking approach to schedule tasks on a heterogeneous multiprocessor with provably good performance.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising a constant number (denoted by t) of distinct types of processors—such a platform is referred to as a t-type platform. We present two algorithms, LPGIM and LPGNM, each providing the following guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then: (i) LPGIM succeeds in finding such an assignment where the same restriction on task migration applies (intra-migrative) but given a platform in which only one processor of each type is 1 + α × t-1/t times faster and (ii) LPGNM succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which every processor is 1 + α times faster. The parameter α is a property of the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors: (i) for the problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence our algorithm, LPGIM, is the first of its kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPGNM, has superior performance compared to state-of-the-art.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.
Resumo:
Includes bibliographical references.
Resumo:
In this work an iterative strategy is developed to tackle the problem of coupling dimensionally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a reinterpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition, each code in black-box mode. The main application for which this procedure is envisaged arises when modeling hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models, correspondingly. The potentialities and the performance of the strategy are assessed through several examples involving transient flows and complex network configurations.
Resumo:
In the present work, cellulose obtained from sisal, which is a source of rapid growth, was used. Cellulose acetates were produced in heterogeneous medium, using acetic anhydride as esterifying agent and iodine as catalyst, to check if the procedure described in the literature for commercial cellulose also is adequate to sisal cellulose. The results indicated that iodine is an excellent catalyst to obtain sisal cellulose acetates, but the reaction is so fast as described in the literature when, instead of sisal, lower average molar weight cellulose (microcrystalline) is used. The crystallinity index (I(c)) of sisal cellulose acetates diminished compared to sisal cellulose, but there was no direct correlation between their degree of substitution (DS) and I(c). Probably acetyl groups were introduced more homogeneously along the short chains of microcrystalline cellulose, when compared to sisal cellulose, and then for microcrystalline cellulose acetates the Ic decreases as DS increases. Using the linear correlation that was found between degree of substitution (DS) and time reaction is possible to control the DS of sisal cellulose acetates, considering a large interval of degrees of substitution (0.3-2.8).
Resumo:
Background: Although the Clock Drawing Test (CDT) is the second most used test in the world for the screening of dementia, there is still debate over its sensitivity specificity, application and interpretation in dementia diagnosis. This study has three main aims: to evaluate the sensitivity and specificity of the CDT in a sample composed of older adults with Alzheimer`s disease (AD) and normal controls; to compare CDT accuracy to the that of the Mini-mental State Examination (MMSE) and the Cambridge Cognitive Examination (CAMCOG), and to test whether the association of the MMSE with the CDT leads to higher or comparable accuracy as that reported for the CAMCOG. Methods: Cross-sectional assessment was carried out for 121 AD and 99 elderly controls with heterogeneous educational levels from a geriatric outpatient clinic who completed the Cambridge Examination for Mental Disorder of the Elderly (CAMDEX). The CDT was evaluated according to the Shulman, Mendez and Sunderland scales. Results: The CDT showed high sensitivity and specificity. There were significant correlations between the CDT and the MMSE (0.700-0.730; p < 0.001) and between the CDT and the CAMCOG (0.753-0.779; p < 0.001). The combination of the CDT with the MMSE improved sensitivity and specificity (SE = 89.2-90%; SP = 71.7-79.8%). Subgroup analysis indicated that for elderly people with lower education, sensitivity and specificity were both adequate and high. Conclusions: The CDT is a robust screening test when compared with the MMSE or the CAMCOG, independent of the scale used for its interpretation. The combination with the MMSE improves its performance significantly, becoming equivalent to the CAMCOG.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure. (C) 2008 Published by Elsevier B.V.