873 resultados para Heterogeneous kinetics. Niobium oxide. Oleic acid. Methyl esterification. Biodiesel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the heterogeneous catalysts materials made from niobium show up as an alternative to meet the demand of catalysts for biodiesel production. This study aims to evaluate the potential of a heterogeneous catalyst derived from a complex of niobium in the reaction of methyl esterification of oleic acid. The catalyst was synthesized after calcination at different temperatures of a niobium complex ((NH4)3[NbO(C2O4)3].H2O) generating a niobium oxide nanostructure with a different commercial niobium oxide used to synthesize the complex. The commercial niobium oxide, the complex niobium and niobium catalyst were characterized by thermogravimetry (TG and DTA), surface area analysis (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing the catalyst has researched morphological and crystallographic indicating a catalytic potential higher than that of commercial niobium oxide characteristics. Factorial with central composite design point, with three factors (calcination temperature, molar ratio of alcohol/oleic acid and mass percentage of catalyst) was performed. Noting that the optimal experimental point was given by the complex calcination temperature of 600°C, a molar ratio alcohol/oleic acid of 3.007/1 and the catalyst mass percentage of 7.998%, with a conversion of 22.44% oleic acid in methyl oleate to 60 min of reaction. We performed a composite linear and quadratic regression to determine an optimal statistical point of the reaction, the temperature of calcination of the complex at 450°C, the molar ratio of alcohol/oleic acid 3.3408/1 and mass percentage of catalyst of 7.6833% . Kinetic modeling to estimate parameters for heterogeneous catalysis it set well the experimental results with a final conversion of 85.01% with 42.38% of catalyst and without catalyst at 240 min reaction was performed. Allowing to evaluate the catalyst catalytic studied has the potential to be used in biodiesel production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global niobium production is presently dominated by three operations, Araxá and Catalão (Brazil), and Niobec (Canada). Although Brazil accounts for over 90% of the world’s niobium production, a number of high grade niobium deposits exist worldwide. The advancement of these deposits depends largely on the development of operable beneficiation flowsheets. Pyrochlore, as the primary niobium mineral, is typically upgraded by flotation with amine collectors at acidic pH following a complicated flowsheet with significant losses of niobium. This research compares the typical two stage flotation flowsheet to a direct flotation process (i.e. elimination of gangue pre-flotation) with the objective of circuit simplification. In addition, the use of a chelating reagent (benzohydroxamic acid, BHA) was studied as an alternative collector for fine grained, highly disseminated pyrochlore. For the amine based reagent system, results showed that while comparable at the laboratory scale, when scaled up to the pilot level the direct flotation process suffered from circuit instability because of high quantities of dissolved calcium in the process water due to stream recirculation and fine calcite dissolution, which ultimately depressed pyrochlore. This scale up issue was not observed in pilot plant operation of the two stage flotation process as a portion of the highly reactive carbonate minerals was removed prior to acid addition. A statistical model was developed for batch flotation using BHA on carbonatite ore (0.25% Nb2O5) that could not be effectively upgraded using the conventional amine reagent scheme. Results showed that it was possible to produce a concentrate containing 1.54% Nb2O5 with 93% Nb recovery in ~15% of the original mass. Fundamental studies undertaken included FT-IR and XPS, which showed the adsorption of both the protonized amine and the neutral amine onto the surface of the pyrochlore (possibly at niobium sites as indicated by detected shifts in the Nb3d binding energy). The results suggest that the preferential flotation of pyrochlore over quartz with amines at low pH levels can be attributed to a difference in critical hemimicelle concentration (CHC) values for the two minerals. BHA was found to be absorbed on pyrochlore surfaces by a similar mechanism to alkyl hydroxamic acid. It is hoped that this work will assist in improving operability of existing pyrochlore flotation circuits and help promote the development of niobium deposits globally. Future studies should focus on investigation into specific gangue mineral depressants and inadvertent activation phenomenon related to BHA flotation of gangue minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanorod forms of metal oxides is recognised as one of the most remarkable morphologies. Their structure and functionality have driven important advancements in a vast range of electronic devices and applications. In this work, we postulate a novel concept to explain how numerous localised surface states can be engineered into the bandgap of niobium oxide nanorods using tungsten. We discuss their contributions as local state surface charges for the modulation of a Schottky barrier height, relative dielectric constant and their respective conduction mechanisms. Their effect on the hydrogen gas molecule interactions mechanisms are also examined herein. We synthesised niobium tungsten oxide (Nb17W2O25) nanorods via a hydrothermal growth method and evaluated the Schottky barrier height, ideality factor, dielectric constant and trap energy level from the measured I-V vs temperature characteristics in the presence of air and hydrogen to show the validity of our postulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The autoxidation of conjugated linoleic acid (CLA) is poorly understood in spite of increasing interest in the beneficial biological properties of CLA and growing consumption of CLA-rich foods. In this thesis, the autoxidation reactions of the two major CLA isomers, 9-cis,11-trans-octadecadienoic acid and 10-trans,12-cis-octadecadienoic acid, are investigated. The results contribute to an understanding of the early stages of the autoxidation of CLA methyl ester, and provide for the first time a means of producing and separating intact CLA methyl ester hydroperoxides as well as basic knowledge on lipid hydroperoxides and their hydroxy derivatives. Conjugated diene allylic monohydroperoxides were discovered as primary autoxidation products formed during autoxidation of CLA methyl esters in the presence and absence of α-tocopherol. This established that one of the autoxidation pathways of CLA methyl ester is the hydroperoxide pathway. Hydroperoxides were produced from the two major CLA methyl esters by taking advantage of the effect of α-tocopherol to promote hydroperoxide formation. The hydroperoxides were analysed and separated first as methyl hydroxyoctadecadienoates and then as intact hydroperoxides by HPLC. The isolated products were characterized by UV, GC-MS, and NMR techniques. In the presence of a high amount of α-tocopherol, the autoxidation of CLA methyl ester yields six kinetically-controlled conjugated diene monohydroperoxides and is diastereoselective in favour of one particular geometric isomer as a pair of enantiomers. The primary autoxidation products produced from the two major CLA isomers include new positional isomers of conjugated diene monohydroperoxides, the 8-, 10-, 12-, and 14-hydroperoxyoctadecadienoates. Furthermore, two of these new positional isomers have an unusual structure for a cis,trans lipid hydroperoxide where the allylic methine carbon is adjacent to the cis instead of the usual trans double bond. The 1H and 13C NMR spectra of nine isomeric methyl hydroxyoctadecadienoates and of ten isomeric methyl hydroperoxyoctadecadienoates including the unusual cis,trans hydroperoxides, i.e. Me 8-OOH-9c,11t and Me 14-OOH-10t,12c, were fully assigned with the aid of 2D NMR spectroscopy. The assigned NMR data enabled determination of the effects of the hydroxyl and hydroperoxyl groups on the carbon chemical shifts of CLA isomers, identification of diagnostic signals, and determination of chemical shift differences of the olefinic resonances that may help with the assignment of structure to as yet unknown lipid hydroperoxides either as hydroxy derivatives or as intact hydroperoxides. A mechanism for the hydroperoxide pathway of CLA autoxidation in the presence of a high amount of α-tocopherol was proposed based on the characterized primary products, their relative distribution, and theoretical calculations. This is an important step forward in CLA research, where exact mechanisms for the autoxidation of CLA have not been presented before. Knowledge of these hydroperoxide formation steps is of crucial importance for understanding the subsequent steps and the different pathways of the autoxidation of CLA. Moreover, a deeper understanding of the autoxidation mechanisms is required for ensuring the safety of CLA-rich foods. Knowledge of CLA oxidation and how it differs from the oxidation of nonconjugated polyunsaturated fatty acids may also be the key to understanding the biological mechanisms of CLA activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of heterojunctions between two crystals with different band gap structures, acting as a tunnel for the unidirectional transfer of photo-generated charges, is an efficient strategy to enhance photocatalytic performance in semiconductor photocatalysts. The heterojunctions may also promote the photoactivity in the visible-light-response of any surface complex catalysts by influencing the transfer of photo-generated electrons. Herein, Nb2O5 microfibers, with a high surface area of interfaces between an amorphous phase and crystalline phase, were designed and synthesised by the calcination of hydrogen-form niobate while controlling the crystallization The photoactivity of these microfibers towards selective aerobic oxidation reactions was investigated. As predicted, the Nb2O5 microfibres containing heterojunctions exhibited the highest photoactivity. This could be due to the band gap difference between the amorphous phase and the crystalline phase, which shortened the charge mobile distance and improved the efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C20H35N3O6 (Boc-Aib-DL-Pip-Aib-OMe, Boc = tert-butyloxycarbonyl, Aib = alpha-aminoisobutyric acid, Pip = pipecolic acid, OMe = methoxy), M(r) = 413.5, monoclinic, P2(1)/c, a = 18.055 (3), b = 15.048 (3), c = 17.173 (3) angstrom, beta = 91.7 (1)-degrees, V = 4663.8 (9) angstrom3, Z = 8, D(m) = 1.16, D(x) = 1.178 Mg m-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 0.081 mm-1, F(000) = 1792, T = 297 K. The final R value for 4925 [I greater-than-or-equal-to 3sigma(I)] reflections is 0.065 (wR = 0.067). The peptide backbone of the two independent molecules in the asymmetric unit is folded at the -Aib-Pip- sequence to form a type-I (I') beta-bend stabilized by a 1 <-- 4 intramolecular N-H...O=C hydrogen bond between the Aib(3) peptide N-H and Boc urethane C=O groups.