941 resultados para Heterocyclic compounds
Resumo:
Infrared spectra of oxazolidine-2-one (Oxo), -2-thione (Oxt) and their N-deuteriated derivatives have been measured over the range 4000-20 cm−1. The fundamental frequencies of these molecules have been assigned on the basis of normal coordinate calculations carried out using a Urey-Bradley potential function supplemented with valence type constants for the out-of-plane modes of the planar skeleton. The results of the vibrational analyses are discussed and correlated with the assignments available for the other related five membered heterocyclic molecules.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Tese de dout., Química, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2008
Resumo:
[EN] A review focused on recent advances in intramolecular aza-Wittig reaction of phosphazenes with several carbonyl or analogous compounds is reported. Phosphazenes afford intramolecular aza-Wittig reaction with different groups within the molecule as aldehydes, ketones, esters, thioesters, amides, anhydrides and sulfimides. One of the most important applications of this reaction is the synthesis of a wide range of heterocyclic compounds, ranging from simple monocyclic compounds to complex polycyclic and macrocyclic systems.
Resumo:
The work in this thesis mainly deals with l,l-enediamines and ~ -substituted enamines (push-pull olefines) and their reactions, leading to the formation of a number of heterocycles. Various ~-substituted enamines were prepared by a 'one pot synthesis' in which a l,l-enediamine presumably acts as an intermediate. These enamines, various substituted crotonamides and propenamides, were made by using two different orthoesters, various secondary and primary amines and cyanoacetamide. Their structures, mechanism of formation and geometry are discussed. A synthetic route to various unsymmetrically substituted pyridines was examined. Two substituted pyridinones were obtained by using two different ~-substituted enamines and cyanoacetamide. In one case a dihydropyridine was isolated. This dihydropyridine, on heating in acidic conditions, gave a pyridinone, which confirmed this dihydropyridine as an intermediate in this pyridine synthesis. A new synthetic method was used to make highly substituted pyridinones, which involved the reaction of l,l-enediamines with the ~-substituted enamines. A one pot synthesis and an interrupted one pot synthesis were used to make these pyridinones. Two different orthoesters and three different secondary amines were used. Serendipitous formation of a pyrimidinone was observed when pyrrolidine was used as the secondary amine and triethyl orthopropionate was used as the orthoester. In all cases cyanoacetamide was used as the carbon acid. This pyridine synthesis was designed with aI, l-enediamine as the Michael donor and the ~ -substituted enamines as Michael acceptors. Substituted ureas were obtained in two cases, which was a surprise. Some pyrimidines were made by reacting two substituted enamines with two different amidines. When benzamidine was used, the expected pyrimidines were obtained. But, when 2-benzyl-2-thiopseudourea (which is also an amidine) was used, of the two expected pyrimidines, only one was obtained. In the other case, an additional substitution reaction took place in which the S-benzyl group was lost. An approach to quinazolone and benzothiadiazine synthesis is discussed. Two compounds were made from 1, I-dimorpholinoethene
Resumo:
The work described in this thesis has been dtvided into six sections . The first section involves the reaction of 3,5-diphenyl-2-methyl-l,3,4-oxadiazolium perchlorate with acetic and benzoic anhydrides. The second section deals with the preparation and reactions of 1,3,4-thia diazolium salts. Some monomeric 1,3,4-thiadiazoline methine bases have also been prepared by reacting 1,3,4-thia d iaz ol ium s al t s with concen trated ammonium hydroxide solution. Variable temperature p.m.r. of 2-(3-acetylacetonylidene)-3,5-diphenyl-A4 -1,3,4-thiadiazoline has also been described. The third section deals with prepar a tion and reactions of some compounds in benzoxazole series. The fourth section deals with the prep a ration and reactions of N-alkyl-2-methylbenzothi azolium salts with base , a nd with some a cetylating and thioacetylating agents. Treatment of 2,3-dimethylbenzothiazolium iodide and of 3-ethyl-2-methylbenzothia zolium iodide with base wa s found to give the corresponding dimeric methine b a ses and evidence supporting their structure is also given. Thiol acetic acid was found to exchange 0 for S in its reactions with 2-acetonylidene-3-methylbenzothiazoline and 2-acetophenonylidene-3-methylbenzothi a zoline. (ii) In th e fifth section, the r eactions of 2,3-dimethylbenzselenazolium iodide with a variety of ac e tylating and thioacetylating agents has been described. The treatment of 2,3-dimethylbenzselenazolium iodide with base was found to give rise to a dimeric methine base and evidence supporting its structure is also given. The reactions of this dimeric methine b a se with benzoic anhydride and phenylisothiocyanate have also been described. The sixth section deals with the preparation and reactions of l-alkyl-2-methylquinolinium salts. Treatment of 1,2-dimethylquinolinium iodide and l-ethyl-2-methylquinolinium iodide was found to give the corresponding monomeric methine bases and evidence supporting their structure is also given. The E-type geometry of the olefinic bond in 2-acetonylidene-l-methylquinoline has been established on the basis of an N.O.E. experiment.
Resumo:
In the thesis entitled " Novel Strategies for Heterocyclic Constructions via 1 ,4-Dipolar Intermediates"Synthesis of a complex organic molecules essentially involves the formation of carbon-carbon and carbon-heteroatom bonds. Various synthetic methods are available for these processes involving ionic, pericyclic and radical reactions. Among the pericyclic reactions, dipolar cycloaddition reactions, introduced by Huisgen, have emerged as a very powerful tool for heterocyclic construction. Heterocyclic compounds remain an important class of organic molecules due to their natural abundance and remarkable biological activity, thus constituting an intergral part of pharmaceutical industry. In this respect, developing newer synthetic methodology for heterocyclic construction has been an area of immense interest. In recent years, 1,3-dipolar cycloaddition reactions proved to be efficient routes to a wide variety of five membered heterocycles, as attested by their application in the total synthesis of various complex organic molecules. However, the potential application of similar 1,4- dipolar cycloaddition reactions for the construction of six memebered heterocycles remained underexploited. In this context, a systematic investigation of the reactivity of 1,4-dipoles generated from nitrogen heterocycles (pyridine and its analogues) and dimethyl acetylenedicarboxy!ate (DMAD) towards various dipolarophiles has been carried out and the results are embodied.
Resumo:
Heterocyclic compounds represent almost two-thirds of all the known organic compounds: they are widely distributed in nature and play a key role in a huge number of biologically important molecules including some of the most significant for human beings. A powerful tool for the synthesis of such compounds is the hetero Diels-Alder reaction (HDA), that involve a [4+2] cycloaddition reaction between heterodienes and suitable dienophiles. Among heterodienes to be used in such six-membered heterocyclic construction strategy, 3-trialkylsilyloxy-2-aza-1,3-dienes (Fig 1) has been demonstrated particularly attractive. In this thesis work, HDA reactions between 2-azadienes and carbonylic and/or olefinic dienophiles, are described. Moreover, substitution of conventional heating by the corresponding dielectric heating as been explored in the frame of Microwave-Assisted-Organic-Synthesis (MAOS) which constitutes an up-to-grade research field of great interest both from an academic and industrial point of view. Reaction of the azadiene 1 (Fig 1) will be described using as dienophiles carbonyl compounds as aldehyde and ketones. The six-membered adducts thus obtained (Scheme 1) have been elaborated to biologically active compounds like 1,3-aminols which constitutes the scaffold for a wide range of drugs (Prozac®, Duloxetine, Venlafaxine) with large applications in the treatment of severe diseases of nervous central system (NCS). Scheme 1 The reaction provides the formation of three new stereogenic centres (C-2; C-5; C-6). The diastereoselective outcome of these reactions has been deeply investigated by the use of various combination of achiral and chiral azadienes and aliphatic, aromatic or heteroaromatic aldehydes. The same approach, basically, has been used in the synthesis of piperidin-2-one scaffold substituting the carbonyl dienophile with an electron poor olefin. Scheme 2 As a matter of fact, this scaffold is present in a very large number of natural substances and, more interesting, is a required scaffold for an huge variety of biologically active compounds. Activated olefins bearing one or two sulfone groups, were choose as dienophiles both for the intrinsic characteristic flexibility of the “sulfone group” which may be easily removed or elaborated to more complex decorations of the heterocyclic ring, and for the electron poor property of this dienophiles which makes the resulting HDA reaction of the type “normal electron demand”. Synthesis of natural compounds like racemic (±)-Anabasine (alkaloid of Tobacco’s leaves) and (R)- and (S)-Conhydrine (alkaloid of Conium Maculatum’s seeds and leaves) and its congeners, are described (Fig 2).