984 resultados para Hereditary disease
Resumo:
Mode of access: Internet.
Resumo:
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C > T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T > C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron–exon boundary and may affect the splicing mechanism in the NOTCH3 gene.
Resumo:
O acesso ao tratamento da Doença de Fabry (DF) no sistema público de saúde nacional. Trata-se de uma pesquisa exploratória de corte transversal, centrada em elementos qualitativos, realizada com os profissionais e os pacientes portadores da DF, no Ambulatório de Genética Clínica do Hospital Universitário Gaffrée e Guinle - HUGG. Utilizou-se como coleta de dados a entrevista aberta e semiestruturada. Seu objetivo maior é identificar os aspectos bioéticos envolvidos no acesso ao tratamento da DF no SUS, e para tal buscamos tornar manifestos os argumentos morais dos profissionais do ambulatório, acerca da existência de uma política pública para o tratamento das doenças raras no SUS. A Bioética Principialista de Beauchamp e Childress, em seus princípios prima-facie: o respeito pela autonomia; a não maleficência; a beneficência e a justiça, é tomada como fundamentação teórica deste estudo. O tratamento dos dados se deu por meio do método de análise de conteúdo, de Bardin. A pesquisa contempla o percurso histórico das principais política públicas de saúde, e seus movimentos em direção à criação do SUS, e a integração dos hospitais universitários ao sistema público de saúde, em seus marcos legais. Ela também enfoca a mobilização da sociedade política e organizada em busca da materialização política pública de atenção às Doenças Raras. O estudo constatou que os princípios de Justiça e da Beneficência emergiram espontaneamente, e por vezes implicitamente, na fala do sujeitos da pesquisa, em suas justificativas morais para a criação de uma política pública para Doenças Raras. Ademais, é delineado o curso da doença na família, haja vista tratar-se de doença hereditária. Assinala-se de que modo a DF chegou do acaso a estas pessoas, e como estas chegaram ao diagnóstico e tratamento.
Resumo:
Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k(cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10 Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.
Resumo:
Hereditary Hemochromatosis (HH) is a genetic disease caused by high iron absorption and deposition in several organs. This accumulation results in clinical disturbances such as cirrhosis, arthritis, cardiopathies, diabetes, sexual disorders and skin darkening. The H63D and C282Y mutations are well defined in the hemochromatosis etiology. The aim of this paper was that of identifying the H63D and C282Y genetical mutations in the hemochromatosis gene and the frequency assessment of these mutations in the HFE protein gene in patients with hyperferritin which are sent to the DNA Center laboratory in Natal, state of Rio Grande do Norte. This paper also evaluates the HH H63D and C282Y gene mutations genotype correlation with the serum ferritin concentration, glucose, alanine aminotransferasis, aspartato aminotransferasis, gama glutamil transferasis and with the clinical complications and also the interrelation with life habits including alcoholism and iron overload. The biochemical dosages and molecule analyses are done respectively by the enzymatic method and PCR with enzymatic restriction. Out of the 183 patients investigated, 51,4% showed no mutation and 48,6% showed some type of mutation: 5,0% were C282Y heterozygous mutation; 1,1%, C282Y homozygous mutation; 31%, H63D heterozygous mutation; 8,7%, H63D homozygous mutation; and 3,3%, heterozygous for the mutation in both genes. As to gender, we observed a greater percentage of cases with molecular alteration in men in relation to women in the two evaluated mutations. The individuals with negative results showed clinical and lab signs which indicate hemochromatosis that other genes could be involved in the iron metabolism. Due to the high prevalence of hemochromatosis and taking into account that hemochromatosis is considered a public health matter, its gravity being preventable and the loss treatment toxicity, the early genetic diagnosis is indicated, especially in patients with high ferritin, and this way it avoids serious clinical manifestations and increases patients' life expectation. Our findings show the importance of doing such genetic studies in individuals suspected of hereditary hemochromatosis due to the high incidence of such a hereditary disease in our region
Resumo:
Cherubism is a rare non-neoplastic hereditary disease, characterized by bilateral bone enlargement of the jaws and is accompanied by inflammation and fibrosis in childhood. An increase in jaw size is noted, with maximum enlargement occurring within 2 years of onset in most cases. By age 7, the lesions become static or progress relatively slowly until puberty. During the late teens, the disease may undergo spontaneous involution. The present case show a patient with history of bilateral enlargement of the jaw with the triad of clinical, histological and radiological findings that helps in the final diagnosis of cherubism.
Resumo:
The exercise-induced collapse (EIC) is a hereditary disease characterized by muscle weakness, impaired locomotion and collapse after intense exercise. This autossomic recessive disorder affects mainly Labrador Retriever presenting the mutation c.767G>T in the dynamin 1 (DNM1) gene. The objective of this study is to report the first case of exercise-induced collapse in Labrador Retriever in Brazil. The molecular test detected the specific genetic mutation and confirmed the clinical diagnosis in a Labrador Retriever with clinical history of weakness and collapse after exercise. It is important to include this disease as part of the differential diagnosis of neuromuscular diseases in Labrador Retriever and use the molecular test to guide matings.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The exercise-induced collapse (EIC) is a hereditary disease characterized by muscle weakness, impaired locomotion and collapse after intense exercise. This autossomic recessive disorder affects mainly Labrador Retriever presenting the mutation c.767G>T in the dynamin 1 (DNM1) gene. The objective of this study is to report the first case of exercise-induced collapse in Labrador Retriever in Brazil. The molecular test detected the specific genetic mutation and confirmed the clinical diagnosis in a Labrador Retriever with clinical history of weakness and collapse after exercise. It is important to include this disease as part of the differential diagnosis of neuromuscular diseases in Labrador Retriever and use the molecular test to guide matings.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).
Resumo:
Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.
Resumo:
DNA testing is available for a growing number of hereditary diseases in neurology and other specialties. In addition to guiding breeding decisions, DNA tests are important tools in the diagnosis of diseases, particularly in conditions for which clinical signs are relatively nonspecific. DNA testing also can provide valuable insight into the risk of hereditary disease when decisions about treating comorbidities are being made. Advances in technology and bioinformatics will make broad screening for potential disease-causing mutations available soon. As DNA tests come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results.
Resumo:
BACKGROUND Cystic Fibrosis is the most common autosomal-recessive hereditary disease among white Europeans. The average survival of CF patients has increased to above 40 years and transition from paediatric to adult care has therefore become a significant issue. AIM With this study, experiences of adolescents with CF and their parents with the transition from the paediatric to the adult care were explored. METHODS At a Swiss university CF centre, six adolescents and their mothers were recruited. Twelve narrative interviews were conducted on how the phase of transition was experienced. The transcribed interviews were analysed according to the method of hermeneutic phenomenology. RESULTS Positive and negative experiences with long term routine care in the paediatric service, general themes of adolescence and the quality of the relationship with paediatric doctors influenced the families' experience during transition significantly. For mothers, insensitive information on the CF diagnosis might have influenced the transition experience. The adolescents welcomed an individualized and age appropriate care. Continuity in care, the announcement of, and involvement in the planning of the transfer were of great importance. The families particularly appreciated the timed adaptations of the transfer to individual needs. CONCLUSIONS Flexibility and a strong collaboration between paediatric and adult CF teams are most relevant in the care of families.
Resumo:
Sun exposure has been clearly implicated in premature skin aging and neoplastic development. These features are exacerbated in patients with xeroderma pigmentosum (XP), a hereditary disease, the biochemical hallmark of which is a severe deficiency in the nucleotide excision repair of UV-induced DNA lesions. To develop an organotypic model of DNA repair deficiency, we have cultured several strains of primary XP keratinocytes and XP fibroblasts from skin biopsies of XP patients. XP skin comprising both a full-thickness epidermis and a dermal equivalent was succesfully reconstructed in vitro. Satisfactory features of stratification were obtained, but the expression of epidermal differentiation products, such as keratin K10 and loricrin, was delayed and reduced. In addition, the proliferation of XP keratinocytes was more rapid than that of normal keratinocytes. Moreover, increased deposition of cell attachment proteins, α-6 and β-1 integrins, was observed in the basement membrane zone, and β-1 integrin subunit, the expression of which is normally confined to basal keratinocytes, extended into several suprabasal cell layers. Most strikingly, the in vitro reconstructed XP skin displayed numerous proliferative epidermal invasions within dermal equivalents. Epidermal invasion and higher proliferation rate are reminiscent of early steps of neoplasia. Compared with normal skin, the DNA repair deficiency of in vitro reconstructed XP skin was documented by long-lasting persistence of UVB-induced DNA damage in all epidermal layers, including the basal layer from which carcinoma develops. The availability of in vitro reconstructed XP skin provides opportunities for research in the fields of photoaging, photocarcinogenesis, and tissue therapy.