728 resultados para Herbicides.
Resumo:
The effective removal of pollutants using a thermally and chemically stable substrate that has controllable absorption properties is a goal of water treatment. In this study, the surfaces of thin alumina (γ-Al2O3) nanofibres were modified by the grafting either of two organosilane agents, 3-chloro-propyl-triethoxysilane (CPTES) and octyl-triethoxysilane (OTES). These modified materials were then trialed as absorbents for the removal of two herbicides, alachlor and imazaquin from water. The formation of organic groups during the functionalisation process established super hydrophobic sites on the surfaces of the nanofibres. This super hydrophobic group is a kind of protruding adsorption site which facilitates the intimate contact with the pollutants. OTES grafted substrate were shown to be more selective for alachlor while imazaquin selectivity is shown by the CPTES grafted substrate. Kinetics studies revealed that imazaquin was rapidly adsorbed on CPTES-modified surfaces. However, the adsorption of alachlor by OTES grafted surface was achieved more slowly.
Resumo:
Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides, ametryn, cyanatryn, and dimethametryn. It was found that their voltammograms overlapped strongly, and it is difficult to determine these compounds individually from their mixtures. With the aid of chemometrics, classical least squares(CLS), principal component regression(PCR) and partial least squares(PLS), voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed. The proposed method was also applied to the analysis of some real samples with satisfactory results.
Resumo:
Materials consisting of anatase linked to Laponite particles were synthesized by the reaction of TiOSO4 with Laponite, and were used for the degradation of pesticides. All these materials were characterized by XRD, FTIR, Raman, TEM, specific surface area and porosity determinations. Based on the amount of photoactive phase per unit mass of the clay mineral, not based on the total weight of the catalysts, these porous catalysts were displaying a high degradation rate than commercial P25. The TiO2 immobilized clay mineral catalysts can sediment in few minutes and could be readily separated out from a slurry system after the photocatalytic reaction. Settling properties of these catalysts are enormously high in aqueous media in contrast to P25.
Resumo:
This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.
Resumo:
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Resumo:
A set of packed micro paddy lysimeters, placed in a greenhouse, was used to simulate the dissipation of two herbicides, simetryn and thiobencarb, in a controlled environment. Data from a field monitoring study in 2003, including the soil condition and water balances, were used in the simulation. The herbicides were applied and monitored over a period of 21 d. The water balances under two water management scenarios, intermittent irrigation management (AI) and continuous irrigation management (CI), were simulated. In the AI scenario, the pattern of herbicide dissipation in the surface water of the field were simulated, following the first-order kinetics. In the CI scenario, similarity was observed in most lysimeter and field concentrations, but there were differences in some data points. Dissipation curves of both herbicides in the surface water of the two simulated scenarios were not significantly different (P > 0.05) from the field data except for intercept of the thiobencarb curve in the CI scenario. The distribution of simetryn and thiobencarb in the soil profile after simulation were also similar to the field data. The highest concentrations of both herbicides were found on the topsoil layer at 0-2.5 cm depth. Only a small amount of herbicides moved down to the deeper soil layers. Micro paddy lysimeters are thus a good alternative for the dissipation study of pesticides in the paddy environment.
Resumo:
This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.
Resumo:
Quilpie mesquite (Prosopis velutina) is an invasive woody weed that is believed to have been introduced into south-west Queensland in the 1930s. Following the withdrawal of 2,4,5-T, research on P. pallida resulted in revised recommendations for control of all Prosopis spp. in Queensland. Adoption of many of these recommendations for Quilpie mesquite control produced substandard results. Following a pilot trial, a shade-house experiment was conducted to determine the differences in susceptibility of two species of mesquite, P. velutina and P. pallida, to commonly available herbicides. It was hypothesized that P. velutina was less susceptible than P. pallida, based upon claims that the registered chemical recommendations for Prosopis spp. were not sufficiently effective on P. velutina. Nine foliar herbicide treatments were applied to potted shade-house plants. Treatment effects indicated differing susceptibility between the two species. P. velutina consistently showed less response to metsulfuron, fluroxypyr, 2,4-D/picloram and triclopyr/picloram, compared to the glyphosate formulations, where negligible differences occurred between the two species. The response to glyphosate was poor at all rates in this experiment. Re-application of herbicides to surviving plants indicated that susceptibility can decrease when follow-up application is in autumn and the time since initial application is short. The relationship between leaf structure and the volume of spray adhering to a plant was assessed across species. The herbicide captured by similar-sized plants of each species differed, with P. pallida retaining a greater volume of herbicide.
Resumo:
This paper reports a field study undertaken to determine if the foliar application of herbicides fluroxypyr (150 mL 100 L-1 a.i.) and metsulfuron-methyl (12 g 100 L-1 a.i.) were capable of reducing the germination and viability of Chromolaena odorata (L.) R.M.King & H.Rob. (Siam weed) seeds at three different stages of maturity. After foliar application of fluroxypyr germination of mature seeds was reduced by 88% and intermediate and immature seeds were reduced by 100%, compared to the control. Fluroxypyr also reduced the viability of mature, intermediate and immature seeds by 79, 89 and 67% respectively, compared to the control. Metsulfuron-methyl reduced germination of intermediate and immature seeds by 53 and 99% respectively compared to the control. Viability was also reduced by 74 and 96% respectively, compared to the control. Mature seeds were not affected by metsulfuron-methyl as germination and viability increased by 2% and 1% respectively, as compared to the control. These results show that these herbicides are capable of reducing the amount of viable seed entering the seed bank. However depending on the treatment and stage of seed development a percentage of seeds on the plants will remain viable and contribute to the seed bank. This information is of value to Siam weed eradication teams as plants are most easily located and subsequently treated at the time of flowering. Knowledge of the impact of control methods on seeds at various stages of development will help determine the most suitable chemical control option for a given situation.
Resumo:
Twenty three herbicides including the current registered herbicides were screened for activity on pre-emergent, juvenile and mature plants of the weedy Sporobolus grass species Sporobolus pyramidalis P.Beauv. and Sporobolus fertilis (Steud.) Clayton. No new herbicides trialled effectively controlled mature plants. Propaquizafop, fluazifop-P-hutyI, flupropanate, haloxyfop-R-methyl ester, glyphosate-ipa and clethodim + haloxyfop-R-methyl ester mix showed good activity on juvenile plants while atrazine, flupropanate, dithiopyr and imazapyr where effective as pre-emergent herbicides. Further work needs to be done to define the recommended application rates for juvenile and pre-emergent plant stages and to determine the selectivity of these herbicides on native and exotic pasture grasses.
Resumo:
This project will develop better understanding of resistance to glyphosate, paraquat and Group I herbicides to better inform weed management. The project will develop a range of tools for farm advisors to improve their confidence in decision making with respect to reducing the risk of glyphosate, Group I and paraquat resistance. These will include risk assessments, case studies and scenario exploring tools. The project will discuss with commercial providers the potential for new herbicide registrations. The project will establish farm advisor learning groups to work on the application of the research in local areas where resistance is already a major problem and to improve adoption of research outcomes from this and other projects.
Resumo:
Pimelea poisoning is an ongoing, periodically serious problem for cattle producers in inland Australia. The annual native plants of the Thymelaeaceae family that cause the problem are widespread and animal management is currently the main means of minimizing poisoning. However, there are situations in the higher rainfall parts of the natural distribution area of these plants where farming and quite intensive property development do occur and here the use of selective herbicides may be an option. This research looked for herbicides that could be considered for registration for Pimelea control, bearing in mind the large potential costs involved if used over large areas. Group I hormone herbicides (for example 2,4-D) were quite effective as was metsulfuron-methyl and glyphosate at doses commonly registered for use on broad-leafed weeds. On the basis of minimizing costs and quickly suppressing seed-set, metsulfuron-methyl at 3.5e5 g a.i. ha1 and 2,4-D at 375e500 g a.i. ha1 were the most promising. Where medic (Medicago spp.) persistence is vital, 2,4-DB at 240e300 g a.i. ha1 could be used and glyphosate at 1 kg a.i. ha1 would be effective on fallowed ground if costwas not an overriding concern.
Resumo:
Mikania micrantha Kunth (mikania vine) is a highly invasive tropical weed that was first discovered in Australia in 1997, and has been the target of a nationally cost-shared weed eradication program since 2003. Field crews have been effectively treating the weed with herbicide solutions containing 1 g a.i. L−1 of fluroxypyr. During the eradication program there have been limited opportunities to test alternative foliar herbicides or rates. A newly discovered infestation provided sufficient immature vines to compare the effectiveness of eight herbicide treatments.