41 resultados para Hepatocarcinogenesis
Resumo:
Epithelial-mesenchymal transitions (EMTs) are believed to play a role in invasion and metastasis of many types of tumors. In this issue of the JCI, Chen et al. show that a gene that has been associated with aggressive biology in hepatocellular carcinomas initiates a molecular cascade that results in EMT.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influences of fasting on DEN-initiation and of intermittent fasting (IF) on the rat liver chemical carcinogenesis process were evaluated in a 52-week long assay. Three groups of adult male Wistar rats were used: Groups I to 3 were treated with a single i.p. injection of 200 mg/kg of diethylnitrosamine (DEN). Group 2 was submitted to 48 h fasting prior to DEN treatment. After the 4th week, Group 3 was submitted to IF, established as 48 h weekly fasting during 48 weeks, while Groups I and 2 were fed ad libitum until the 52nd week. All animals were submitted to 70% partial hepatectomy and sacrificed at the 3rd and 52nd weeks, respectively. Fasting prior to DEN-initiation did not influence the development of altered foci of hepatocytes (AFHs) and of hepatic nodules (Group 2 vs. Group G1). IF inhibited the development of preneoplastic lesions, since this dietary regimen decreased the number and the size of glutathione S-transferase (GST-P) positive foci and the number and size of liver nodules (Group G3 vs. Group G1), the inhibitory effect of IF was also reflected in the development of clear and basophilic cell foci. These results indicate that long-term IF regimen exerts an anti-promoting effect on rat hepatocarcinogenesis induced by DEN. (C) 2002 Wiley-Liss, Inc.
Resumo:
The interaction between dietary energy restriction and low dose of the fungicide hexachlorobenzene (HCB) was evaluated in a rat liver medium-term bioassay for carcinogenesis. Male Wistar rats were fed a control or a 50% energy-restricted diet, both added or not with 50 ppm HCB, for 6 weeks. HCB exposure or energy restriction separately did not exert any influence on the development of glutathione S-transferase placental form (GST-P+) foci of hepatocytes. Simultaneous HCB exposure and energy restriction induced a significant increase in liver centrilobular hypertrophy and GST-P+ foci development. Our findings suggest that energy restriction increases liver response to low dose of HCB, unmasking the promoting potential of this fungicide. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Various studies have shown that lycopene, a non-provitamin A carotenoid, exerts antioxidant, antimutagenic and anticarcinogenic activities in different in vitro and in vivo systems. However, the results concerning its chemopreventive potential on rat hepatocarcinogenesis are ambiguous. The aim of the present study was to investigate the antigenotoxic and anticarcinogenic effects of dietary tomato oleoresin adjusted to lycopene concentration at 30, 100 or 300ppm (administered 2 weeks before and during or 8 weeks after carcinogen exposure) on liver of male Wistar rats treated with a single intraperitoneal dose of 20 or 100 mg/kg of diethylnitrosamine (DEN), respectively. The level of DNA damage in liver cells and the development of putative preneoplastic single hepatocytes, minifoci and foci of altered hepatocytes (FHA) positive for glutathione S-transferase (GST-P) were used as endpoints. Significant reduction of DNA damage was detected when the highest lycopene concentration was administered before and during the DEN exposure (20 mg/kg). However, the results also showed that lycopene consumption did not reduce cell proliferation in normal hepatocytes or the growth of initiated hepatocytes into minifoci positive for GST-P during early regenerative response after 70% partial hepatectomy, or the number and area of GST-P positive FHA induced by DEN (100 mg/ kg) at the end of week 10. Taken together, the data suggest a chemopreventive effect of tomato oleoresin against DNA damage induced by DEN but no clear effectiveness in initiating or promoting phases of rat hepatocarcinogenesis. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The eventual chemopreventive effect of squalene (SQ), a triterpene present in olive oil, was evaluated when administered to Wistar rats during a period comprising the initiation and selection/promotion of the resistant hepatocyte (RH) model of hepatocarcinogenesis. During 8 consecutive wk, animals received by gavage SQ (100 or 150 mg/100 g body weight) dissolved in corn oil (CO) daily. Animals treated with only CO and submitted to the RH model were used as controls. Treatments with SQ did not result in inhibition of macroscopically visible hepatocyte nodules (P > 0.05) or of hepatic placental glutathione S-transferase-positive preneoplastic lesions (PNL; P > 0.05). Hepatic cell proliferation and apoptosis indexes were not different (P > 0.05) among the different experimental groups, both regarding PNL and surrounding normal tissue areas. There were no significant differences (P > 0.05) among comets presented by rats treated with the two SQ doses or with CO. on the other hand, SQ increased total plasma cholesterol levels when administered at both doses (P < 0.05). This indicates that the isoprenoid was absorbed. Thus, SQ did not present chemopreventive activity during hepatocarcinogenesis and had a hypercholesterolemic effect, suggesting caution when considering its use in chemoprevention of cancer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The chemopreventive effects of tributyrin (TB) and vitamin A (VA), alone or in combination, were investigated during the promotion phase of rat hepatocarcinogenesis. Compared to diethylnitrosamine control rats. TB and TB+VA-treated rats, but not VA-treated rats, presented a lower incidence and mean number of hepatocyte nodules and a smaller size of persistent preneoplastic lesions (pPNLs). In addition, TB and TB+VA-treated rats exhibited a higher apoptotic body index in pPNL and remodeling PNL, whereas VA-treated rats presented only a higher apoptotic body index in remodeling PNL. None of the treatments inhibited cell proliferation in PNL TB and TB+VA-treated rats, but not VA-treated rats, exhibited higher levels of H3K9 acetylation and p21 protein expression. TB and VA-treated rats exhibited increased hepatic concentrations of butyric acid and retinoids, respectively. Compared to normal rats, diethylnitrosamine control animals exhibited lower retinyl palmitate hepatic concentrations. All groups had similar expression levels and exhibited similar unmethylated CRBP-I promoter region in microdissected pPNL, indicating that epigenetic silencing of this gene was not involved in alteration of retinol metabolism in early hepatocarcinogenesis. Data support the effectiveness of TB as a dietary histone deacetylase inhibitor during the promotion phase of hepatocarcinogenesis, which should be considered for chemoprevention combination strategies. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.
Resumo:
The major risk factors for liver cancer in Southeast Asia: HBV infection, aflatoxin exposure and p53 expression/mutation, were examined in experimental models. Four groups were examined for development of hepatocellular carcinoma (HCC) with and without neonatal exposure to aflatoxin (AFB$\sb1)$: (Group I.) Transgenic HBsAg mice with one p53 allele. (Group II) Transgenic HBsAg mice with two p53 alleles. (Group III) Non-transgenic litter mates with one p53 allele. (Group IV) Non-transgenic litter mates with two p53 alleles. HCC developed in Group I animals exposed to aflatoxin at an earlier time and were of a higher grade than those seen later in other groups. These results provide an explanation for as to why p53 is a target for deletion and/or mutation in human HCC especially when found in high risk areas where HBV infection and Aflatoxin B1 food contamination is high, and nicely illustrates a synergistic interaction among these three factors. None of the tumors analyzed had loss or mutation in the p53 gene.^ To determine the significance of the specific p53ser249 mutation found in HBV/aflatoxin associated human hepatomas in an in-vivo experimental model using transgenic mice, a two-nucleotide change in the mouse p53 gene at amino acid position 246, which is equivalent to that of 249 in human p53, was introduced. Transgenic mice with mutant p53 controlled by the albumin promoter were generated and shown to express the p53ser246 mutant RNA and protein specifically in liver. Three groups were examined for development of HCC with and without neonatal exposure to aflatoxin: (Group V) Transgenic p53ser246 mice with two p53 alleles. (Group VI) Transgenic p53ser246 mice with one p53 allele. (Group VII) Double transgenic for p53ser246 and HBsAg with two p53 alleles. One hundred percent of male mice with the three risk factors injected with aflatoxin developed high grade liver tumors, compared to 66.6% from group VI and only 14.2% of group V suggesting synergistic interaction between HBsAg and this particular ser246 p53 mutation.^ In order to examine the growth properties of hepatocytes and correlation with p53 loss and/or mutation, cell proliferation and ploidy analysis of liver from normal heterozyous, homozygous null mice and from transgenic mutant p53ser246, mice were studied. Loss of wild-type p53 increased G1/G0 ratios of cells as well as proliferation and decreased cell ploidy. The mutant p53ser246 did not show a significant effect on cell ploidy or proliferation. However a striking 5-10X increase in G1/G0 ratio suggests that this specific mutation specifically induces G0 to G1 transition, which in turn further predisposes hepatocytes to the damaging effect of Aflatoxin. (Abstract shortened by UMI.) ^
Resumo:
Hormonal and genetic factors strongly influence the susceptibility of inbred mice to hepatocarcinogenesis. Female C57BR/cdJ (BR) mice are extremely susceptible to liver tumor induction relative to other strains because they are genetically insensitive to the inhibition of hepatocarcinogenesis by ovarian hormones. To determine the genetic basis for the sensitivity of BR mice relative to resistant C57BL/6J (B6) mice, we treated 12-day-old B6BRF1 x B6 and B6BRF1 x B6BRF1 (F2) animals with N,N-diethylnitrosamine (0.1 micromol/g of body weight) and enumerated liver tumors at 32 weeks of age in males and at 50 weeks in females. Genomic DNA samples from backcross and F2 mice were analyzed for 70 informative simple sequence length polymorphism markers. Genetic markers on chromosome 17 (D17Mit21) and chromosome 1 (D1Mit33) cosegregated with high tumor multiplicity in both sexes. Together, these loci [designated Hcf1 and Hcf2 (Hepatocarcinogenesis in females), respectively] account for virtually all of the difference in sensitivity between BR and B6 mice. The Hcf1 locus accounts for a majority of the higher susceptibility of BR mice of both sexes. Backcross female mice heterozygous at both loci (33 +/- 23 tumors per mouse) and at Hcf1 only (17 +/- 18) were 15- and 8-fold more sensitive, respectively, than mice homozygous for the B6 alleles at Hcf1 and Hcf2 (2.2 +/- 3.9). In backcross male mice, the double heterozygotes (35 +/- 22) and Hcf1 heterozygotes (28 +/- 12) were 5.4- and 4.3-fold more sensitive than mice homozygous for B6 alleles at both loci (6.5 +/- 5.4).
Resumo:
The chemopreventive potential of an Agaricus blazei (Ab) Murrill mushroom meal was investigated in a medium-term rat liver carcinogenesis assay. Male Wistar rats initiated for hepatocarcinogenesis with diethylnitrosamine (DEN, 200 mg/kg i.p.) were fed during a 6-week period with the dry powdered mushroom strains Ab 29 or 26, each one with opened (OB) or closed basidiocarp (CB), mixed at 10% level in a basal diet. All experimental animals and controls were subjected to partial hepatectomy at week 3 and killed at week 8. Chemopreventive activity of the mushroom meal was observed for the Ab 29 (OB and CB) and Ab 26 (CB) strains in terms of the number of putative preneoplastic altered foci of hepatocytes which express either the enzyme glutathione S-transferase, placental form (GST-P+) or the transforming growth factor-alpha, and for the Ab 29 (OB) and Ab 26 (CB) strains on the size of GST-P-divided by foci. This was associated with inhibition of foci cell proliferation in the animals fed the Ab 29 (013) and Ab 26 (CB) strains. The results suggest that the protective influence of the Ab meal against the DEN potential for rat liver carcinogenicity depends on both the strain and period of mushroom harvest. (C) 2003 Elsevier Ltd. All rights reserved.