972 resultados para Hepatic gluconeogenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the effect of a meal feeding schedule (MFS) on food intake, hepatic glycogen synthesis, hepatic capacity to produce glucose and glycemia in rats. The MFS comprised free access to food for a 2-hour period daily at a fixed mealtime (8.00-10.00 a.m.) for 13 days. The control group was composed of rats with free access to food from day 1 to 12, which were then starved for 22 h, refed with a single meal at 8.00-10.00 a.m. and starved again for another 22 h. All experiments were performed at the meal time (i.e. 8.00 a.m.). The MFS group exhibited increased food intake and higher glycogen synthase activity. Since gluconeogenesis from L-glutamine or L-alanine was not affected by MFS, we conclude that the increased food intake and higher glycogen synthase activity contributed to the better glucose maintenance showed by MFS rats at the fixed meal time. Copyright © 2001 National Science Council, ROC and S. Karger AG, Basel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-beta-D-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPK alpha 2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. (Endocrinology 153: 3633-3645, 2012)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As associações entre obesidade, doença hepática gordurosa não alcoólica (NAFLD) e diabetes mellitus tipo 2 (DM2) são bem estabelecidas, e o sistema renina-angiotensina (SRA) pode proporcionar uma ligação entre eles. O bloqueio do SRA em diferentes níveis pode estar relacionado a respostas na resistência à insulina, remodelagem do pâncreas e do fígado em um modelo de obesidade induzida por dieta. Camundongos C57BL/6 foram alimentados com uma dieta hiperlipídica (HF) durante oito semanas e depois tratados com alisquireno (50 mg/kg/dia), enalapril (30 mg/kg/dia) ou losartana (10 mg/kg/dia) por um período adicional de seis semanas. As drogas foram incorporadas na dieta. Avaliou-se a massa corporal (MC), pressão arterial, consumo e gasto energético (GE), metabolismo da glicose e lipídico, histopatologia pancreática e hepática, análise hormonal, imunohistoquímica, perfil gênico e/ou proteico do SRA no pâncreas, gliconeogênese hepática, sinalização da insulina, oxidação e acúmulo lipídico. Todos os inibidores do SRA reduziram significativamente o aumento da pressão arterial nos camundongos alimentados com dieta HF. O tratamento com enalapril, mas não alisquireno ou losartana, reduziu o ganho de MC e a ingestão alimentar; aumentou o GE; amenizou a intolerância à glicose e resistência à insulina; melhorou a massa de células alfa e beta; impediu a redução da adiponectina plasmática e restaurou a sensibilidade à leptina. Além disso, o tratamento com enalapril melhorou a expressão proteica nas ilhotas pancreáticas de Pdx1, GLUT2, ECA2 e do receptor Mas. O tratamento com losartana apresentou uma elevação na expressão proteica de AT2R no pâncreas. No fígado, a administração de enalapril atenuou a esteatose hepática, o acúmulo de triglicerídeos e preveniu o aumento dos níveis de PEPCK, G6Pase e do GLUT2. Do mesmo modo, o enalapril melhorou a transdução dos sinais da insulina através da via IRS-1/Akt, bem como reduziu os níveis de expressão gênica e/ou proteica de PPAR-gama, SREBP-1c e FAS. Esses resultados sugerem que a inibição da ECA com enalapril atenuou muitos efeitos deletérios provocados pelo consumo da dieta HF, incluindo: normalização da morfologia e função das ilhotas pancreáticas, proteção contra a resistência à insulina e acúmulo de lipídios no fígado. Estes efeitos protetores do enalapril podem ser atribuídos, principalmente, à redução no ganho de MC e ingestão alimentar, aumento do GE, ativação do eixo ECA2/Ang(1-7)/receptor Mas e dos níveis de adiponectina, o que promove uma melhora na ação hepática da insulina e leptina, normalização da gliconeogênese, amenizando a NAFLD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hábitos inadequados no estilo de vida, pelo consumo exacerbado de dietas ricas em gorduras e açúcares (frutose e sacarose), correlacionam-se positivamente com o desenvolvimento da obesidade, da resistência à insulina (RI) e da esteatose hepática não alcoólica (NAFLD). O estudo teve como objetivo avaliar a magnitude dos efeitos da administração crônica de dietas ricas em gordura e/ou frutose, e ainda, comparar os efeitos dos açúcares isoladamente (frutose e sacarose) sob as alterações bioquímicas, o perfil inflamatório, as respostas morfofuncionais e as expressões proteicas e gênicas de fatores de transcrição envolvidos na lipogênese, na beta-oxidação, na gliconeogênese e no estresse oxidativo no fígado. Camundongos machos C57BL/6 foram divididos em dois experimentos: 1) Dieta controle/standard chow (SC), dieta high fat (HF 42%), dieta high frutose (HFr 34%) e dieta high fat + high frutose (HFHFr - 42% fat + 34% frutose) por 16 semanas; 2) Dieta controle/standard chow (SC), dieta high frutose (HFru 50%) e dieta high sacarose (HSu 50%) por 15 semanas. Ao final dos experimentos foram observados: 1) Não houve diferença na massa corporal entre os animais HFr e SC, só foi observado ganho de peso nos grupos HF e HFHFr. Houve ainda aumento do colesterol total, dos triglicerídeos plasmáticos e hepáticos e RI nos grupos HF, HFr e HFHFr. No fígado, foi observado NAFLD com aumento na expressão de SREBP-1c e PPAR-γ, e redução de PPAR-α. A gliconeogênese mediada pelo GLUT-2 e PEPCK também foi aumentada nos grupos HF, HFr e HFHFr em relação ao grupo SC. Áreas de necroinflamação também foram observadas nos animais HFr e HFHFr; 2) Não houve diferença na massa corporal entre os grupos SC, HFru e HSu. Porém, houve aumento do colesterol total, dos triglicerídeos plasmáticos e hepáticos, da RI, das adipocinas (IL-6, resistina, MCP-1 e leptina), e redução da adiponectina. No fígado, abundante NAFLD com predominância da expressão proteica e gênica de SREBP-1c, PPAR-γ e redução de PPAR-α; e desequilíbrio antioxidante com redução da SOD, da Catalase e da GRx nos grupos HFru e HSu quando comparados ao SC. Não houve diferença na GPx entre os três grupos. Ainda foi observado aumento na expressão proteica de G6Pase, PEPCK e GLUT-2, envolvidos na gliconeogênese hepática nos grupos HFru e HSu. Áreas de necroinflamação, característico da transição NAFLD-NASH, também foram observados. Os resultados permitem concluir que, independente do aumento da massa corporal, a administração crônica de dietas ricas em frutose e sacarose tem efeitos similares aos observados com o consumo de dieta hiperlipídica. Parece que a RI e a NAFLD sejam os precursores destas alterações.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gluconeogenesis in livers from overnight fasted weaned rats submitted to short-term insulin-induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg(-1)). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L-alanine (5 mM), L-lactate (2 mM)), L-glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L-lactate and pyruvate production from L-alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L-lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L-glutamine than livers front COG rats and, in the IIH rats, the production of glucose from L-glutamine was higher than that front L-alanine. The higher glucose production in livers from the IIH group. when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together. the results suggest that L-glutamine is better than L-alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright (C) 2008 John Wiley & Sons. Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42 +/- 0.82 mM immediately after food ingestion and 7.53 +/- 1.12 MM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19 +/- 0.83 ng/ml at 24 h of fasting to 5.27 +/- 0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56 +/- 192.13 and 70.33 +/- 14.13 mumol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Preventiva e Social - FOA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes mellitus implies deregulation of multiple metabolic processes, being the maintenance of glycemia one of the most important. Many genes are involved in the deregulation of this particular process. Therefore, the aim of this study was to evaluate gene expression of genes related to type 2 diabetes mellitus, in the liver and pancreas of rats with hyperglycemia induced by high fat diet along with a low single dose of streptozotocin. Ahsg and Ppargc1a genes were studied in liver, whereas Kcnj11 and Slc2a2 genes were analyzed in pancreas. For this purpose, 210-240 g female rats were fed a high fat diet or a control diet for three weeks. At day 14, animals fed with high fat diet were injected with a single low dose of streptozotocin (35 mg/kg) and the control group rats were injected only with the vehicle. Plasmatic glucose, triglycerides and total cholesterol levels were measured at the beginning, day 14 and end of treatment. Body weight was also measured. Once the treatment was complete, rats were appropriately euthanized and then, pancreas and liver were surgically removed and frozen in liquid nitrogen. Total RNA was isolated using TRIzol reagent, treated with DNase land reversely transcribed to cDNA. Gene expression analysis was performed using SYBR Green - Real time PCR and comparative Cq method, using three reference genes. Rats fed with high fat diet and treated with streptozotocin showed higher values of plasmatic glucose (17.09 +/- 0.43 vs. 5.91 +/- 0.29 mmol/L, p < 0.01) and a minor expression of Ppargc1a versus the control group (2-fold less expressed, p < 0.05) in liver. We conclude that repression of Ppargc1a gene may be an important process in the establishment of chronic hyperglycemia, probably through deregulation of hepatic gluconeogenesis. However, further studies need to be performed in order to clarify the role of Ppargc1a deregulation in liver glucose homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucocorticoid hormones, acting via nuclear receptors, regulate many metabolic processes, including hepatic gluconeogenesis. It recently has been recognized that intracellular glucocorticoid concentrations are determined not only by plasma hormone levels, but also by intracellular 11β-hydroxysteroid dehydrogenases (11β-HSDs), which interconvert active corticosterone (cortisol in humans) and inert 11-dehydrocorticosterone (cortisone in humans). 11β-HSD type 2, a dehydrogenase, thus excludes glucocorticoids from otherwise nonselective mineralocorticoid receptors in the kidney. Recent data suggest the type 1 isozyme (11β-HSD-1) may function as an 11β-reductase, regenerating active glucocorticoids from circulating inert 11-keto forms in specific tissues, notably the liver. To examine the importance of this enzyme isoform in vivo, mice were produced with targeted disruption of the 11β-HSD-1 gene. These mice were unable to convert inert 11-dehydrocorticosterone to corticosterone in vivo. Despite compensatory adrenal hyperplasia and increased adrenal secretion of corticosterone, on starvation homozygous mutants had attenuated activation of the key hepatic gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, presumably, because of relative intrahepatic glucocorticoid deficiency. The 11β-HSD-1 −/− mice were found to resist hyperglycamia provoked by obesity or stress. Attenuation of hepatic 11β-HSD-1 may provide a novel approach to the regulation of gluconeogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)