992 resultados para Hep G2 Cells
Resumo:
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hexabromocyclododecanes (HBCDs) are additive brominated flame retardants mainly used in plastics and textiles. At the present time, these compounds are found in almost all environmental and human samples. In order to evaluate the environmental safety and health risk of HBCDs, the enantiomerically pure alpha-, beta-, and gamma-HBCD were prepared using high performance liquid chromatography (HPLC) on a PM-P-CD column and the cytotoxicities of their enantiomers were evaluated in Hep G2 cells. Results from the 3-(4,5-dimethylthioazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), resazurin reduction and lactate dehydrogenase (LDH) release assays showed a good agreement that the order of cytotoxicity was gamma-HBCD >= beta-HBCD > alpha-HBCD, and that significantly lower cell viability and higher LDH release were observed in all (+)-enantiomers ((+) alpha-, (+) beta- and (+) gamma-HBCD) than the corresponding (-)-forms ((-) alpha-, (-) beta- and (-) gamma-HBCD). Additionally, the formation of reactive oxygen species (ROS) induced by these HBCD enantiomers were detected. The positive correlation between the LDH release and ROS formation demonstrated that the toxic mechanism might be mediated by oxidative damage. These results suggest that environmental and human health risks of HBCDs must be evaluated at the level of individual enantiomers. (C) 2008 Published by Elsevier Ltd.
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.
Resumo:
This study was designed to determine cytotoxic effects of PBDE-47 and HBCDs individually or with a mixture of both compounds exposure to Hep G2 cells. The results showed PBDE-47 and HBCDs induced increase of nitric oxide synthase (NOS) activity, release of NO. dissipation of mitochondria membrane potential and cell apoptosis. Exposure to HBCDs induced ROS formation. Moreover, preincubation with PTIO (NO scavanger) and N-acetylcysteine (ROS scavanger) partially reversed cytotoxic effects of these compounds. The possible mechanism is that PBDE-47 and HBCDs could boost generation of NO and/or ROS, impact mitochondria, and result in start-ups of apoptosis program. Cells exposed to mixture of both compounds and each of them showed non-apoptotic rate significant difference, but the combination of them caused more adverse effects on cells. These results Suggest that PBDE-47 and HBCDs in single and complex exposure have the cytotoxic activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
以低剂量γ射线(0.05Gy)预照射人肝癌细胞hepG2,8h后再用高剂量(3Gy)照射,测定了细胞的克隆存活率和细胞周期。结果表明,低剂量辐射预处理可诱导hepG2细胞产生克隆存活适应性反应,并且有助于细胞通过G2/M期阻滞;低剂量辐射诱导的克隆存活适应性反应与增强的通过细胞周期阻滞的能力之间有一定的相关性。
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Shiitake (Lentinula edodes (Berkeley) Pegler) is one of the most consumed mushrooms, for both therapeutic purposes and as food, therefore, the study of its biological properties is of great interest for producers and consumers. Aqueous extracts of the shiitake mushroom (L. edodes (Berkeley) Pegler) were evaluated by the micronucleus test (MN) in HEp-2 cells in vitro, to analyze their possible mutagenic and antimutagenic activities. None of the three extract concentrations tested (0.5, 1.0 and 1.5 mg/mL) presented mutagenicity at any of the preparation temperatures (4 degrees C, 22 +/- 2 degrees C and 60 degrees C). In the antimutagenicity evaluation, all extract concentrations at all preparation temperatures presented a strong protective activity for the HEp-2 cells in response to the alkylating agent methyl methanesulfonate (MMS) in the different treatment protocols: pre-treatment, simultaneous treatment and post-treatment. The extracts prepared at 22 +/- 2 degrees C presented the lowest frequencies of MN in the evaluations of mutagenicity and antimutagenicity, indicating these as the best option for potential therapeutic use. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have previously shown that in HEp-2 cells, multivesicular bodies (MVBs) processing internalized epidermal growth factor–epidermal growth factor receptor complexes mature and fuse directly with lysosomes in which the complexes are degraded. The MVBs do not fuse with a prelysosomal compartment enriched in mannose 6-phosphate receptor (M6PR) as has been described in other cell types. Here we show that the cation-independent M6PR does not become enriched in the endocytic pathway en route to the lysosome, but if a pulse of M6PR or an M6PR ligand, cathepsin D, is followed, a significant fraction of these proteins are routed from the trans-Golgi to MVBs. Accumulation of M6PR does not occur because when the ligand dissociates, the receptor rapidly leaves the MVB. At steady state, most M6PR are distributed within the trans-Golgi and trans-Golgi network and in vacuolar structures distributed in the peripheral cytoplasm. We suggest that these M6PR-rich vacuoles are on the return route from MVBs to the trans-Golgi network and that a separate stable M6PR-rich compartment equivalent to the late endosome/prelysosome stage does not exist on the endosome–lysosome pathway in these cells.
Resumo:
Oxovanadium(IV) complexes VO(aip)(L)](ClO4)(2) (L = phtpy, 1; stpy, 2) and VO(pyip)(L)](ClO4)(2) (L = phtpy, 3; stpy, 4), where aip is 2-(9-anthryl)-1H-imidazo4,5-f]1,10] phenanthroline, pyip is 2-(1-pyrenyl)-1Himidazo4,5-f]1,10] phenanthroline, phtpy is (4'-phenyl)-2,2': 6',2 `'-terpyridine and stpy is (2,2': 6', 2 `'-terpyridin-4'-oxy) ethyl-beta-D-glucopyranoside, were prepared, characterized and their DNA binding and photocleavage activity, cellular uptake and photocytotoxicity in visible light were studied. The complexes are avid binders to calf thymus DNA (K-b similar to 10(5) mol(-1)). They efficiently cleave pUC19 DNA in red light of 705 nm via the formation of HO center dot species. The glucose appended complexes 2 and 4 showed higher photocytotoxicity in HeLa and Hep G2 cells over the normal HEK 293T cells. No such preference was observed for the phtpy complexes 1 and 3. No significant difference in IC50 values was observed for the HEK 293T cells. Cell cycle analysis showed that the glucose appended complexes 2 and 4 are more photocytotoxic in cancer cells than in normal cells. Fluorescence microscopy was done to study the cellular localization of complex 4 having a pendant pyrenyl group.
Resumo:
The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.
Resumo:
AIDA-I (adhesin involved in diffuse adherence) est une importante adhésine autotransporteur exprimée par certaines souches de Escherichia. coli impliquée dans la colonisation des porcelets sevrés causant la diarrhée post-sevrage et la maladie de l’œdème. Une précédente étude de notre laboratoire a identifié l’apolipoprotéine AI (ApoAI) du sérum porcin, la protéine structurale des lipoprotéines à haute densité, comme récepteur cellulaire putatif de AIDA-I. L’interaction entre ces deux protéines doit être caractérisée. Ici, nous montrons par ELISA que AIDA-I purifiée est capable d’interagir avec l’ApoAI humaine, mais également avec les apolipoprotéines B et E2. L’ApoAI est rencontrée sous deux formes, soit libre ou associée aux lipides. Nous montrons que la forme libre n’interagit pas avec les bactéries AIDA-I+ mais s’associe spécifiquement à l’ApoAI membranaire de cellules épithéliales HEp-2. Afin d’étudier le rôle de l’ApoAI dans l’adhésion des bactéries, nous avons infecté des cellules HEp-2 en présence d’anticorps dirigés contre l’ApoAI, mais l’adhésion des bactéries AIDA I+ n’a jamais été réduite. De plus, l’induction de l’expression de l’ApoAI par fénofibrate et GW7647 chez les cellules Caco 2 polarisée et Hep G2, n’a pas permis l’augmentation de l’adhésion cellulaire des E. coli exprimant AIDA-I. Notre étude suggère davantage que l’interaction entre AIDA-I et ApoAI n’intervient pas dans les mécanismes d’adhésion cellulaire.