916 resultados para Hematite particles
Resumo:
Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Uniform metal iron ellipsoidal particles of around 200 nm in length were obtained by reduction and passivation of alumina-coated alpha-Fe2O3 (hematite) particles under different conditions of temperature and hydrogen flow rate. The monodispersed hematite particles were prepared by the controlled hydrolysis of ferric sulfate and further coated with a homogeneous thin layer of Al2O3 by careful selection of the experimental conditions, mainly pH and aluminum salt concentration. The reduction mechanism of alpha-Fe2O3 into alpha-Fe was followed by x-ray and electron diffraction, and also by the measurements of the irreversible magnetic susceptibility. The transformation was found to be topotactic with the [001] direction of hematite particles, which lies along the long axis of the particles, becoming the [111] direction of magnetite and finally the [111] direction of metal iron. Temperature and hydrogen flow rate during the reduction have been found to be important parameters, which determine not only the degree of reduction but also the crystallite size of the final particles. Magnetic characterization of the samples shows that the only parameters affected by the crystallite size are the saturation magnetization and magnetic time-dependence effect, i.e., activation volume. (C) 2002 American Institute of Physics.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^
Resumo:
In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
Resumo:
Selective flocculation and dispersion processes rely on differences in the surface chemistry of fine mineral particles (<25 >ìm) to allow for the concentration of specific minerals from an ore body. The effectiveness of selective flocculation and dispersion processes for the concentration of hematite (Fe2O3) ore are strongly dependent on the ionic content of the process water. The goal of this research was to analyze the ionic content of an operating selective flocculation and dispersion type hematite ore concentrator and determine how carbon dioxide affects the filtration of the final product. A detailed water chemistry analysis of the entire process was determined to show concentration profiles throughout the process. This information was used to explain process phenomena and promote future research into this subject. A subsequent laboratory study was conducted to show how carbon dioxide affects filtration rate and relate this effect to the zeta potential of the constituents of the concentrated hematite ore.
Resumo:
The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.
Resumo:
We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE) for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy parameter for the potential. The spectrum of the GPE is also discussed.
Resumo:
Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
A magnetic study of 10 nm magnetite nanoparticles diluted in lyotropic liquid crystal and common liquids was carried out. In the liquid crystal the ZFC-FC curves showed a clear irreversible behavior, and it was possible to distinguish the nematic from the isotropic phase since the magnetization followed the dependence of the nematic order parameter with the temperature. This behavior could be mimicked by Monte Carlo simulation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549616]
Resumo:
We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
Neutrino telescopes with cubic kilometer volumes have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.