962 resultados para Hedgehogs -- Molecular aspects.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infections caused by the genus Staphylococcus are of great importance for human health. Staphylococcus species are divided into coagulase-positive staphylococci, represented by S. aureus, a pathogen that can cause infections of the skin and other organs in immunocompetent patients, and coagulase-negative staphylococci (CNS) which comprise different species normally involved in infectious processes in immunocompromised patients or patients using catheters. Oxacillin has been one of the main drugs used for the treatment of staphylococcal infections; however, a large number of S. aureus and CNS isolates of nosocomial origin are resistant to this drug. Methicillin resistance is encoded by the mecA gene which is inserted in the SCCmec cassette. This cassette is a mobile genetic element consisting of five different types and several subtypes. Oxacillin-resistant strains are detected by phenotypic and genotypic methods. Epidemiologically, methicillin-resistant S. aureus strains can be divided into five large pandemic clones, called Brazilian, Hungarian, Iberian, New York/Japan and Pediatric. The objective of the present review was to discuss aspects of resistance, epidemiology, genetics and detection of oxacillin resistance in Staphylococcus spp., since these microorganisms are increasingly more frequent in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the Staphylococcus genus, especially Staphylococcus aureus, are the most common pathogens found in hospitals and in community-acquired infections. Some of their pathogenicity is associated with enzyme and toxin production. Until recently, S. aureus was the most studied species in the genus; however, in last few years, the rise of infections caused by coagulase-negative staphylococci has pointed out the need for further studies on virulence factors that have not yet been completely elucidated so as to better characterize the pathogenic potential of this group of microorganisms. Several staphylococcal species produce enterotoxins, a family of related proteins responsible for many diseases, such as the toxic-shock syndrome, septicemia and food poisoning. To this date, 23 different enterotoxin types have been identified besides toxic-shock syndrome toxin-1 (TSST-1), and they can be divided into five phylogenetic groups. The mechanism of action of these toxins includes superantigen activity and emetic properties, which can lead to biological effects of infection. Various methods can detect genes that encode enterotoxins and their production. Molecular methods are the most frequently used at present. This review article has the objective to describe aspects related to the classification, structure and regulation of enterotoxins and toxic-shock syndrome toxin-1 detection methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bordetella avium is an opportunistic pathogen that presents tropism for ciliated epithelia, leading to upper respiratory tract disease in turkeys. This agent has also been associated with Lockjaw Syndrome in psittacine birds, but literatures describing the importance of this agent in such species are rare. The purpose of the present study was to report the first outbreak of B. avium infection in juvenile cockatiels demonstrating the Lockjaw Syndrome in Brazil and to investigate the antimicrobial resistance profile and phenotypic and genotypic characteristics of these strains. Surprising, the strains obtained from five infected cockatiel chicks from three different breeders from different Brazilian states showed a clonal relationship using the Pulsed Field Gel Electrophoresis and Single Enzyme Amplified Fragment Length Polymorphism techniques. The virulence potentials of the B. avium strains were assessed using tracheal adherence and cytotoxic effects on a VERO cell monolayer. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the prevalence, associated risk factors and genotype of Giardia duodenalis infection in children attending public daycare centers in the city of Araguari, state of Minas Gerais, Brazil. Fecal samples were collected from 245 children aged 0-5 years, and questionnaires were asked about sociodemographic and hygiene-related characteristics. At the daycare centers where children tested positive, fecal samples were collected from the staff handling food, and from family members and domestic animals. Positive samples were analyzed at the dehydrogenase glutamate (gdh) locus to determine the genotype. The prevalence of G. duodenalis was 51.8%, and drinking unfiltered and unboiled water (OR 2.12, CI 1.26-3.69, p<0.001) and washing hands only with water (OR 2.14, Cl 1.19-4.04, p<0.001) were related risk factors. No association was found between test-positive children anti their family members, domestic animals and food handlers. An analysis of the sequences of 30 samples revealed that they all belonged to genotype B. (C) 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse large B-Cell lymphoma is the most common subtype of non-Hodgkin lymphoma in the West. In Brazil, it is the fifth cause of cancer, with more than 55,000 cases and 26,000 deaths per year. At Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - HCFMUSP, diffuse large B-Cell lymphoma represents 49.7% of all non-Hodgkin lymphoma cases. Initially, the classification of non-Hodgkin lymphoma was based on morphology, but advances in immunology and molecular medicine allowed the introduction of a biological classification for these diseases. As for other cancers, non-Hodgkin lymphoma involves patterns of multi factorial pathogenesis with environmental factors, as well as genetic, occupational and dietary factors, contributing to its development. Multiple lesions involving molecular pathways of B-cell proliferation and differentiation may result in the activation of oncogenes such as the BCL2, BCL6,and MYC genes and the inactivation of tumor suppressor genes such as p53 and INK4, as well as other important transcription factors such as OCT-1 and OCT-2. A dramatic improvement in survival was seen after the recent introduction of the anti-CD20 monoclonal antibody. The association of this antibody to the cyclophosphamide, hydroxydaunorubicin, oncovin and prednisolone (CHOP) regimen has increased overall survival of diffuse large B-Cell lymphoma and follicular lymphoma patients by 20%. However, 50% of all diffuse large B-Cell lymphoma patients remain incurable, creating a demand for more research with new advances in treatment. Thus, it is important to know and understand the key factors and molecular pathways involved in the pathogenesis of diffuse large B-Cell lymphoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.