940 resultados para Heating plants
Resumo:
Lloyd W. Gordon, architect. Also called University Heating Plant, from 1894-1914; later used as Engineering, 1914-1923; then R.O.T.C., 1923-1959. East stack removed 1948, rest demolished 1959
Resumo:
The temperature-time profiles of 22 Australian industrial ultra-high-temperature (UHT) plants and 3 pilot plants, using both indirect and direct heating, were surveyed. From these data, the operating parameters of each plant, the chemical index C*, the bacteriological index B* and the predicted changes in the levels of beta-lactoglobulin, alpha-lactalbumin, lactulose, furosine and browning were determined using a simulation program based on published formulae and reaction kinetics data. There was a wide spread of heating conditions used, some of which resulted in a large margin of bacteriological safety and high chemical indices. However, no conditions were severe enough to cause browning during processing. The data showed a clear distinction between the indirect and direct heating plants. They also indicated that degree of denaturation of alpha-lactalbumin varied over a wide range and may be a useful discriminatory index of heat treatment. Application of the program to pilot plants illustrated its value in determining processing conditions in these plants to simulate the conditions in industrial UHT plants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mode of access: Internet.
Resumo:
The objective of this study has been to describe and analyse existing forms of organisation in heating plants using wood fuels, regarding work tasks, organisational structure, skill demands, crew recruitment, working hours and wage conditions. Sixteen plants ranging from 10 to 120 MW have been studied by means of interviews, work place observations and written material. The job of the operator of heating plants is fairly qualified, independent and varied. The most negative factor is shift work. Some of the bigger plants (enterprises) have a relatively hierarchic, segmented and perhaps also an oversized organisation. However, modern concepts of organisation, such as customer orientation, ”flat organisation”, integration of production and maintenance etc, are gaining ground. Blue collar and white collar tasks are increasingly being integrated. Some of the medium sized enterprises have reached very far and may serve as models for bigger enterprises.
Resumo:
The study assessed the effect of heating vermiculites on extractability of phosphorus, iron, zinc and manganese with respect to their potential agricultural use. Of these elements, phosphorus was from apatite and monazite that occur as accessory minerals in vermiculites. Vermiculites were heated at 15-800 degrees C and digested by acetic acid for extracting phosphorus and diethylene triamine pentaacetic acid (DTPA) for extracting zinc, iron and manganese. Phosphorus in the extract was analysed by a flow injection method while zinc, iron and manganese were measured by atomic absorption spectrometry. The results showed that heating vermiculites to 400 C enhanced extractability of phosphorus from apatite and monazite to a level of 335 mg kg(-1). Further heating to 800 degrees C reduced extractable phosphorus to less than 75 mg kg(-1). Maximum extractable zinc, iron and manganese found were 2.7, 19.1 and 22.9 mg kg(-1), respectively, values that are beneficial and tolerable by most plants. Thus, it was concluded that heating vermiculites to
Resumo:
The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A number of findings have shown that the test procedures currently available to determine the reliability and durability of photovoltaic (PV) modules are insufficient to detect certain problems. To improve these procedures, ongoing research into the actual performance of the modules in the field is required. However, scientific literature contains but few references to field studies of defective modules. This article studies two different localized heating phenomena affecting the PV modules of two large-scale PV plants in Spain. The first problem relates to weak solder joints whilst the second is due to microcracks on the module cells. For both cases, the cause is identified, and consideration is given with regard to the effect on performance, the potential deterioration over time, and a way to detect the problems identified. The findings contained in this paper will prove to be of considerable interest to maintenance personnel at large-scale PV plants and also to those responsible for setting module quality standards and specifications, and even the PV module manufacturers themselves.
Resumo:
The present work, where additional value-creating processes in existing combined heat and power (CHP) structures have been examined, is motivated by a political- and consumer-driven strive towards a bioeconomy and a stagnation for the existing business models in large parts of the CHP sector. The research is based on cases where the integration of flash pyrolysis for co-production of bio-oil, co-gasification for production of fuel gas and synthetic biofuels as well as leaching of extractable fuel components in existing CHP plants have been simulated. In particular, this work has focused on the CHP plants that utilize boilers of fluidized bed (FB) type, where the concept of coupling a separate FB reactor to the FB of the boiler forms an important basis for the analyses. In such dual fluidized bed (DFB) technology, heat is transferred from the boiler to the new rector that is operating with other fluidization media than air, thereby enabling other thermochemical processes than combustion to take place. The result of this work shows that broader operations at existing CHP plants have the potential to enable production of significant volumes of chemicals and/or fuels with high efficiency, while maintaining heat supply to external customers. Based on the insight that the technical preconditions for a broader operation are favourable, the motivation and ability among the incumbents in the Swedish CHP sector to participate in a transition of their operation towards a biorefinery was examined. The result of this assessment showed that the incumbents believe that a broader operation can create significant values for their own operations, the society and the environment, but that they lack both a strong motivation as well as important abilities to move into the new technological fields. If the concepts of broader production are widely implemented in the Swedish FB based CHP sector, this can substantially contribute in the transition towards a bioeconomy.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
Lead is present everywhere in the environment and has been defined as one of the greatest threats to the human health. In this paper, attempts have been made to study a way of recycling the lead produced from waste usage and disposed of in such a way as to avoid degrading the surrounding environment. In order to contain the waste, recycled asphalt material is mixed with the lead and then heated with microwave energy. This is an attempt to solidify and reduce the lead contaminants and use the final product as sub-base material in road pavement construction. The microwave heating of the specimens is carried out with 30%, 50%, 80% and 100% of power at 800W. The optimum power mode is used to compare with the conventional heating of asphalt with sulfur additive. The results are characterized by compact density, permeability, and subjected to toxicity test with regards to lead concentration. A mechanical test to evaluate the stability is also performed on the three methods of solidification and to prove that microwave zapping method allow to convert into an environmentally stable material for recycling without having to be deposited in a landfill site.