27 resultados para HeatWave
Resumo:
Background and Objective: As global warming continues, the frequency, intensity and duration of heatwaves are likely to increase. However, a heatwave is unlikely to be defined uniformly because acclimatisation plays a significant role in determining the heat-related impact. This study investigated how to best define a heatwave in Brisbane, Australia. Methods: Computerised datasets on daily weather, air pollution and health outcomes between 1996 and 2005 were obtained from pertinent government agencies. Paired t-tests and case-crossover analyses were performed to assess the relationship between heatwaves and health outcomes using different heatwave definitions. Results: The maximum temperature was as high as 41.5°C with a mean maximum daily temperature of 26.3°C. None of the five commonly-used heatwave definitions suited Brisbane well on the basis of the health effects of heatwaves. Additionally, there were pros and cons when locally-defined definitions were attempted using either a relative or absolute definition for extreme temperatures. Conclusion: The issue of how to best define a heatwave is complex. It is important to identify an appropriate definition of heatwave locally and to understand its health effects.
Resumo:
The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.
Resumo:
Background: There is no global definition of a heatwave because local acclimatisation and adaptation influence the impact of extreme heat. Even at a local level there can be multiple heatwave definitions, based on varying temperature levels or time periods. We investigated the relationship between heatwaves and health outcomes using ten different heatwave definitions in Brisbane, Australia. ---------- Methodology/Principal Findings: We used daily data on climate, air pollution, and emergency hospital admissions in Brisbane between January 1996 and December 2005; and mortality between January 1996 and November 2004. Case-crossover analyses were used to assess the relationship between each of the ten heatwave definitions and health outcomes. During heatwaves there was a statistically significant increase in emergency hospital admissions for all ten definitions, with odds ratios ranging from 1.03 to 1.18. A statistically significant increase in the odds ratios of mortality was also found for eight definitions. The size of the heat-related impact varied between definitions.---------- Conclusions/Significance Even a small change in the heatwave definition had an appreciable effect on the estimated health impact. It is important to identify an appropriate definition of heatwave locally and to understand its health effects in order to develop appropriate public health intervention strategies to prevent and mitigate the impact of heatwaves.
Resumo:
Objective To quantify the short-term effects of maternal exposure to heatwave on preterm birth. Design An ecological study. Setting: A population-based study in Brisbane, Australia. Population All pregnant women who had a spontaneous singleton live birth in Brisbane between November and March in 2000–2010 were studied. Methods Daily data on pregnancy outcomes, meteorological factors, and ambient air pollutants were obtained. The Cox proportional hazards regression model with time-dependent variables was used to examine the short-term impact of heatwave on preterm birth. A series of cut-off temperatures and durations were used to define heatwave. Multivariable analyses were also performed to adjust for socio-economic factors, demographic factors, meteorological factors, and ambient air pollutants. Main outcome measure Spontaneous preterm births. Results The adjusted hazard ratios (HRs) ranged from 1.13 (95% CI 1.03–1.24) to 2.00 (95% CI 1.37–2.91) by using different heatwave definitions, after controlling for demographic, socio-economic, and meteorological factors, and air pollutants. Conclusions Heatwave was significantly associated with preterm birth: the associations were robust to the definitions of heatwave. The threshold temperatures, instead of duration, could be more likely to influence the evaluation of birth-related heatwaves. The findings of this study may have significant public health implications as climate change progresses.
Resumo:
Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.
Resumo:
Objective: Examining the association between socioeconomic disadvantage and heat-related emergency department (ED) visits during heatwave periods in Brisbane, 2000–2008. Methods: Data from 10 public EDs were analysed using a generalised additive model for disease categories, age groups and gender. Results: Cumulative relative risks (RR) for non-external causes other than cardiovascular and respiratory diseases were 1.11 and 1.05 in most and least disadvantaged areas, respectively. The pattern persisted on lags 0–2. Elevated risks were observed for all age groups above 15 years in all areas. However, with RRs of 1.19–1.28, the 65–74 years age group in more disadvantaged areas stood out, compared with RR=1.08 in less disadvantaged areas. This pattern was observed on lag 0 but did not persist. The RRs for male presentations were 1.10 and 1.04 in most and less disadvantaged areas; for females, RR was 1.04 in less disadvantaged areas. This pattern persisted across lags 0–2. Conclusions: Heat-related ED visits increased during heatwaves. However, due to overlapping confidence intervals, variations across socioeconomic areas should be interpreted cautiously. Implications: ED data may be utilised for monitoring heat-related health impacts, particularly on the first day of heatwaves, to facilitate prompt interventions and targeted resource allocation.
Resumo:
Even though heatwave events have become more frequent and intense in most regions around the world, little is known about the impact of heatwave on birth outcomes. This thesis uses a population-based study design to investigate the relationship between maternal heatwave exposure and adverse birth outcomes in Brisbane, Australia. This study found that heatwave exposure at any stage of pregnancy can be harmful to fetal growth, and further increase the risk of adverse birth outcomes. Both short- and long-term effects of heatwave on adverse birth outcomes were found. The findings in this thesis may have significant public health implications.
Resumo:
Background: This study attempted to develop health risk-based metrics for defining a heatwave in Brisbane, Australia. Methods: Poisson generalised additive model was performed to assess the impact of heatwaves on mortality and emergency hospital admissions (EHAs) in Brisbane. Results: In general, the higher the intensity and the longer the duration of a heatwave, the greater the health impacts. There was no apparent difference in EHAs risk during different periods of a warm season. However, there was a greater risk of mortality in the second half of a warm season than that in the first half. While elderly (>75 years)were particularly vulnerable to both the EHA and mortality effects of a heatwave, the risk for EHAs also significantly increased for two other age groups (0-64 years and 65-74 years) during severe heatwaves. Different patterns between cardiorespiratory mortality and EHAs were observed. Based on these findings, we propose the use of a teiered heat warning system based on the health risk of heatwave. Conclusions: Health risk-based metrics are a useful tool for the development of local heatwave definitions. thsi tool may have significant implications for the assessment of heatwave-related health consequences and development of heatwave response plans and implementation strategies.
Resumo:
Drawing on a thematic analysis of relevant policy documents, the aim of this paper is to comment on an apparent disconnect between two associated contemporary UK policy areas: planning for heatwaves and community resilience. Regional and national policy documents that plan for heatwaves in the UK tend to focus on institutional emergency responses and infrastructure development. In these documents, although communities are mentioned, they are understood as passive recipients of resilience that is provided by active institutions. Meanwhile, contemporary discussion about community resilience highlights the potential for involving communities in planning for and responding to emergencies (although the concept is also the subject of critique). Within this context, the paper proposes that – through engagement with the ‘community resilience’ policy agenda and its critique – effort should be made to articulate and realise greater participation by individuals, and voluntary and community sector groups in heatwave preparation, planning and response.
Resumo:
From 27 January to 8 February during the summer of 2009, southern Australia experienced one of the nation‘s most severe heatwaves. Governments, councils, utilities, hospitals and emergency response organisations and the community were largely underprepared for an extreme event of this magnitude. This case study targets the experience and challenges faced by decision makers and policy makers and focuses on the major metropolitan areas affected by the heatwave — Melbourne and Adelaide. The study examines the 2009 heatwave‘s characteristics; its impacts (on human health, infrastructure and human services); the degree of adaptive capacity (vulnerability and resilience) of various sectors, communities and individuals; and the reactive responses of government and emergency and associated services and their effectiveness. Barriers and challenges to adaptation and increasing resilience are also identified and further areas for research are suggested. This study does not include details of the heatwave‘s effects beyond Victoria and South Australia, or its economic impacts, or of Victoria‘s 'Black Saturday‘ bushfires.
Resumo:
OBJECTIVE: This paper reviews the epidemiological evidence on the relationship between ambient temperature and morbidity. It assesses the methodological issues in previous studies, and proposes future research directions. DATA SOURCES AND DATA EXTRACTION: We searched the PubMed database for epidemiological studies on ambient temperature and morbidity of non-communicable diseases published in refereed English journals prior to June 2010. 40 relevant studies were identified. Of these, 24 examined the relationship between ambient temperature and morbidity, 15 investigated the short-term effects of heatwave on morbidity, and 1 assessed both temperature and heatwave effects. DATA SYNTHESIS: Descriptive and time-series studies were the two main research designs used to investigate the temperature–morbidity relationship. Measurements of temperature exposure and health outcomes used in these studies differed widely. The majority of studies reported a significant relationship between ambient temperature and total or cause-specific morbidities. However, there were some inconsistencies in the direction and magnitude of non-linear lag effects. The lag effect of hot temperature on morbidity was shorter (several days) compared to that of cold temperature (up to a few weeks). The temperature–morbidity relationship may be confounded and/or modified by socio-demographic factors and air pollution. CONCLUSIONS: There is a significant short-term effect of ambient temperature on total and cause-specific morbidities. However, further research is needed to determine an appropriate temperature measure, consider a diverse range of morbidities, and to use consistent methodology to make different studies more comparable.
Resumo:
Objectives To review the existing research on the effectiveness of heat warning systems (HWSs) in saving lives and reducing harm. Methods A systematic search of major databases was conducted, using “heat, heatwave, high temperature, hot temperature, OR hot climate” AND “warning system”. Results Fifteen articles were retrieved. Six studies asserted that fewer people died of excessive heat after HWS implementation. HWS was associated with reduction in ambulance use. One study estimated the benefits of HWS to be 468millionforsaving117livescomparedto210,000 costs of running the system. Eight studies showed that mere availability of HWS did not lead to behavioral changes. Perceived threat of heat dangers to self/others was the main factor related to heeding warnings and taking proper actions. However, costs and barriers associated with taking protective actions, such as costs of running air conditioners, were of significant concern particularly to the poor. Conclusions Research in this area is limited. Prospective designs applying health behavior theories should establish whether HWS can produce the health benefits they are purported to achieve by identifying the target vulnerable groups.
Resumo:
Background Heat-related impacts may have greater public health implications as climate change continues. It is important to appropriately characterize the relationship between heatwave and health outcomes. However, it is unclear whether a case-crossover design can be effectively used to assess the event- or episode-related health effects. This study examined the association between exposure to heatwaves and mortality and emergency hospital admissions (EHAs) from non-external causes in Brisbane, Australia, using both case-crossover and time series analyses approaches. Methods Poisson generalised additive model (GAM) and time-stratified case-crossover analyses were used to assess the short-term impact of heatwaves on mortality and EHAs. Heatwaves exhibited a significant impact on mortality and EHAs after adjusting for air pollution, day of the week, and season. Results For time-stratified case-crossover analysis, odds ratios of mortality and EHAs during heatwaves were 1.62 (95% confidence interval (CI): 1.36–1.94) and 1.22 (95% CI: 1.14–1.30) at lag 1, respectively. Time series GAM models gave similar results. Relative risks of mortality and EHAs ranged from 1.72 (95% CI: 1.40–2.11) to 1.81 (95% CI: 1.56–2.10) and from 1.14 (95% CI: 1.06–1.23) to 1.28 (95% CI: 1.21–1.36) at lag 1, respectively. The risk estimates gradually attenuated after the lag of one day for both case-crossover and time series analyses. Conclusions The risk estimates from both case-crossover and time series models were consistent and comparable. This finding may have implications for future research on the assessment of event- or episode-related (e.g., heatwave) health effects.