982 resultados para Heat resistance
Resumo:
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease in cattle and other ruminants and has been implicated as a possible cause of Crohn's disease in humans. The organism gains access to raw milk directly through excretion into the milk within the udder and indirectly through faecal contamination during milking. MAP has been shown to survive commercial pasteurization in naturally infected milk, even at the extended holding time of 25 s. Pasteurized milk must therefore be considered a vehicle of transmission of MAP to humans. isolation methods for MAP from milk are problematical, chiefly because of the absence of a suitable selective medium. This makes food surveillance programs and research on this topic difficult. The MAP problem can be addressed in two main ways: by devising a milk-processing strategy that ensures the death of the organism: and/or strategies at farm level to prevent access of the organism into raw milk. Much of the research to date has been devoted to determining ifa problem exists and, if so, the extent of the problem. Little has been directed at possible solutions. Given the current state of information on this topic and the potential consequences for the dairy industry research is urgently needed so that a better understanding of the risks and the efficacy of possible processing solutions can be determined.
Resumo:
Bacterial endospores derive much of their longevity and resistance properties from the relative dehydration of their protoplasts. The spore cortex, a peptidoglycan structure surrounding the protoplasm, maintains, and is postulated to have a role in attaining, protoplast dehydration. A structural modification unique to the spore cortex is the removal of all or part of the peptide side chains from the majority of the muramic acid residues and the conversion of 50% of the muramic acid to muramic lactam. A mutation in the cwlD gene of Bacillus subtilis, predicted to encode a muramoyl-l-alanine amidase, results in the production of spores containing no muramic lactam. These spores have normally dehydrated protoplasts but are unable to complete the germination/outgrowth process to produce viable cells. Addition of germinants resulted in the triggering of germination with loss of spore refractility and the release of dipicolinic acid but no degradation of cortex peptidoglycan. Germination in the presence of lysozyme allowed the cwlD spores to produce viable cells and showed that they have normal heat resistance properties. These results (i) suggest that a mechanical activity of the cortex peptidoglycan is not required for the generation of protoplast dehydration but rather that it simply serves as a static structure to maintain dehydration, (ii) demonstrate that degradation of cortex peptidoglycan is not required for spore solute release or partial spore core rehydration during germination, (iii) indicate that muramic lactam is a major specificity determinant of germination lytic enzymes, and (iv) suggest the mechanism by which the spore cortex is degraded during germination while the germ cell wall is left intact.
Resumo:
BACKGROUND: Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates. RESULTS: Our current study demonstrated the presence of all three SASP-encoding genes (ssp1, 2 and 3) in five surveyed C. perfringens clinical food poisoning isolates. beta-Glucuronidase assay showed that these ssp genes are expressed specifically during sporulation. Consistent with these expression results, our study also demonstrated the production of SASPs by C. perfringens food poisoning isolates. When the heat sensitivities of spores produced by a ssp3 knock-out mutant of a C. perfringens food poisoning isolate was compared with that of spores of the wild-type strain, spores of the ssp3 mutant were found to exhibit a lower decimal reduction value (D value) at 100 degrees C than exhibited by the spores of wild-type strain. This effect was restored by complementing the ssp3 mutant with a recombinant plasmid carrying wild-type ssp3, suggesting that the observed differences in D values between spores of wild-type versus ssp3 mutant was due to the specific inactivation of ssp3. Furthermore, our DNA protection assay demonstrated that C. perfringens SASPs can protect DNA from DNase I digestion. CONCLUSION: The results from our current study provide evidences that SASPs produced by C. perfringens food poisoning isolates play a role in protecting their spores from heat-damage, which is highly significant and relevant from a food safety perspective. Further detailed studies on mechanism of action of SASPs from C. perfringens should help in understanding the mechanism of protection of C. perfringens spores from heat-damage.
Resumo:
Incubation temperature (IT) was changed to evaluate if 6-wk-old birds become more tolerant to heat stress. After 13 d of incubation, 470 eggs were submitted to low (36.8degreesC), normal (37.8degreesC) and high (38.8degreesC) temperatures. At day 7 post-hatching, 144 birds were allocated to three rearing temperatures (48 birds/treatment): control/thermoneutral (35-24degreesC), high (33-30degreesC) or low (27-18degreesC) according to the age of the birds. Hsp70 levels in tissues of birds (1 d and 42 d), stress response (42 d) and performance were evaluated. High IT decreased brain (P < 0.01) and liver (P < 0.01) Hsp70 levels, whereas low IT decreased brain (P < 0.01) but increased heart (P < 0.01) Hsp70 levels in 1-d-old chicks. Birds incubated at a low temperature had higher (P < 0.05) feed intake (1-42d). High rearing temperature decreased feed intake (P<0.01) and liveweight (P<0.01). Colonic temperature was lower in birds incubated at a low temperature (P < 0.05) and higher in birds reared in a high temperature (P < 0.05) before heat stress. Birds reared in low temperature had higher increase in colonic temperature after heat stress (P < 0.05). Tissue Hsp70 levels were differently affected by rearing temperature, which affected broiler performance more than IT. Lower IT seemed to increase the sensitivity of birds to heat stress at market age.
Resumo:
This work investigates some factors affecting the inactivation of common bean trypsin inhibitor and phytohemagglutin. Trypsin inhibitor activity was totally stable to heat treatment (30 min, 97C) in the total protein extract, albumin or globulin fraction. Heat treatment of the whole beans easily inactivated the inhibitor. Heat resistance of trypsin inhibitor was intermediate in the bean flour which received the same heat treatment. Independent of sample, the inhibitor was very stable to heat treatment at neutral and acidic pH and labile under strong alkaline conditions. Heating for 30 min in boiling water at pH 12 resulted in complete inactivation of the trypsin inhibitor. Autoclaving (121C) soaked whole beans and flour for 5 min inactivated 55% of the trypsin inhibitor activity in the soaked flour and 75% in the whole beans. After autoclaving 20 min, inactivation of trypsin inhibitor was about 65% in the flour and 80% in the whole beans. The phytohemagglutinin (lectin) activity was totally destroyed in the autoclaved beans after 5 min and in the flour after 15 min.
Resumo:
This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat-and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 degrees C/15 min. When exposed to 35 % hydrogen peroxide at 25 degrees C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 degrees C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat-and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.
Resumo:
I-2 is an avirulent strain of Newcastle disease virus. During establishment of the I-2 strain master vaccine seed, a series of selection procedures was carried out at 56 degrees C in order to enhance heat resistance. This master seed is used to produce a working seed, which is then employed to produce the vaccine. These two passages are done without further heat selection; however, it is not known how rapidly and to what extent thermostable variants would be lost during further passage. The study was therefore conducted to determine the effect of passage on thermostability of strain I-2. The virus was serially passaged and at various passage levels samples were subjected to heat treatment at 56 degrees C for 120 min. The inactivation rates for infectivity and haemagglutinin (HA) titres were assayed by use of chicken embryonated eggs and HA test, respectively. Thermostability of HA and infectivity of I-2 virus were reduced after 10 and 5 passages, respectively, without heat selection at 56 degrees C. These results suggest that 5 more passages could be carried out between the working seed and vaccine levels without excessive loss of thermostability. This would result in increased vaccine production from a single batch of a working seed.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
Cholesterol is an essential component in the membranes of most eukaryotic cells, in which it mediates many functions including membrane fluidity, permeability and the formation of ordered membrane domains. In this work a fluorescent and a non-fluorescent cholesterol analog were characterized as tools to study cholesterol. Next, these analogs were used to study two specific cell biological processes that involve cholesterol, i.e. the structure and function of ordered membrane domains/rafts and intracellular cholesterol transport. The most common method for studying ordered membrane domains is by disrupting them by cholesterol depletion. Because cholesterol depletion affects many cellular functions besides those mediated by membrane domains, this procedure is highly unspecific. The cellular exchange of cholesterol by desmosterol as a tool to study ordered membrane domains was characterized. It turned out that the ability of desmosterol to form and stabilize membrane domains in vitro was weaker compared to cholesterol. This result was reinforced by atomistic scale simulations that indicated that desmosterol has a lower ordering effect on phospholipid acyl chains. Three procedures were established for exchanging cellular cholesterol by desmosterol. In cells in which desmosterol was the main sterol, insulin signaling was attenuated. The results suggest that this was caused by desmosterol destabilizing membrane rafts. Contrary to its effect on ordered membrane domains it was found that replacing cholesterol by desmosterol does not change cell growth/viability, subcellular sterol distribution, Golgi integrity, secretory pathway, phospholipid composition and membrane fluidity. Together these results suggest that exchanging cellular cholesterol by desmosterol provides a selective tool for perturbing rafts. Next, the importance of cholesterol for the structure and function of caveolae was analyzed by exchanging the cellular cholesterol by desmosterol. The sterol exchange reduced the stability of caveolae as determined by detergent resistance of caveolin-1 and heat resistance of caveolin-1 oligomers. Also the sterol exchange led to aberrations in the caveolar structure; the morphology of caveolae was altered and there was a larger variation in the amount of caveolin-1 molecules per caveola. These results demonstrate that cholesterol is important for caveolar stability and structural homogeneity. In the second part of this work a fluorescent cholesterol analog was characterized as a tool to study cholesterol transport. Tight control of the intracellular cholesterol distribution is essential for many cellular processes. An important mechanism by which cells regulate their membrane cholesterol content is by cholesterol traffic, mostly from the plasma membrane to lipid droplets. The fluorescent sterol probe BODIPY-cholesterol was characterized as a tool to analyze cholesterol transport between the plasma membrane, the endoplasmic reticulum (ER) and lipid droplets. The behavior of BODIPY-cholesterol was compared to that of natural sterols, using both biochemical and live-cell microcopy assays. The results show that the transport kinetics of BODIPY-cholesterol between the plasma membrane, the ER and lipid droplets is similar to that of unesterified cholesterol. Next, BODIPY-cholesterol was utilized to analyze the importance of oxysterol binding protein related proteins (ORPs) for cholesterol transport between the plasma membrane, the ER, and lipid droplets in mammalian cells. By overexpressing all human ORPs it turned out that especially ORP1S and ORP2 enhanced sterol transport from the plasma membrane to lipid droplets. Our results suggest that the increased sterol transport takes place between the plasma membrane and ER and not between the ER and lipid droplets. Simultaneous knockdown of ORP1S and ORP2 resulted in a moderate but significant inhibition of sterol traffic from the plasma membrane to ER and lipid droplets, suggesting a physiological role for these ORPs in this process. The two phenylalanines in an acidic tract (FFAT) motif in ORPs, which mediates interaction with vesicle associated membrane protein associated proteins (VAPs) in the ER, was not necessary for mediating sterol transport. However, VAP silencing slowed down sterol transport, most likely by destabilizing ORPs containing a FFAT motif.
Resumo:
Formation of silicon carbide in the Acheson process was studied using a mass transfer model which has been developed in this study. The century old Acheson process is still used for the mass production of silicon carbide. A heat resistance furnace is used in the Acheson process which uses sand and petroleum coke as major raw materials.: It is a highly energy intensive process. No mass transfer model is available for this process. Therefore, a mass transfer model has been developed to study the mass transfer aspects of the process along with heat transfer. The reaction kinetics of silicon carbide formation has been taken from the literature. It has been shown that reaction kinetics has a reasonable influence on the process efficiency. The effect of various parameters on the process such as total gas pressure, presence of silicon carbide in the initial charge, etc. has been studied. A graphical user interface has also been developed for the Acheson process to make the computer code user friendly.
Resumo:
abstract {Silica glass is an attractive host matrix for the emission ions of rare earth and transition metal ions because it has small thermal expansion coefficient, strong thermal resistance, large fracture strength and good chemical durability and so on. However, a major obstacle to using it as the host matrix is a phenomenon of concentration quenching. In this paper, we introduces a novel method to restrain the concentration quenching by using a porous glass with SiO2 content > 95% (in mass) and prepare intense fluorescence high-SiO2 glasses and high-SiO2 laser glass. The porous glass with high-SiO2 content was impregnated with rare-earth and transition metal ions, and consequently sintered into a compact non-porous glass in reduction or oxidization atmospheres. Various intense fluorescence glasses with high emission yields, a vacuum ultraviolet-excited intensely luminescent glass, high silica glass containing high concentration of Er3+ ion, ultrabroad infrared luminescent Bi-doped high silica glass and Nd3+-doped silica microchip laser glass were obtained by this method. The porous glass is also favorable for co-impregnating multi-active-ions. It can bring effective energy transferring between various active ions in the glass and increases luminescent intensity and extend range of excitation spectrum. The luminescent active ions-doped high-SiO2 glasses are potential host materials for high power solid-state lasers and new transparent fluorescence materials.}
Resumo:
Thermal and crystalline properties of random copolymer of epsilon-caprolactone (CL) and 2,2-dimethyl trimethylene carbonate (DTC) prepared by lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) (La(OAr)(3)) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and wide-angle X-ray diffraction (WAXD). Fox equation interprets the relationship between glass transition temperature (T-g) and copolymer compositions. T-g decreases from PDTC (16.7degreesC) to PCL (-65.1degreesC), reflecting the internal plasticizing effect of CL units on DTC units in the copolymers. The introduction of CL units to PDTC can effectively improve its heat resistance. Small amount of DTC (5% molar) in PCL chain improves the mechanical properties of the polymer, which had elongation of 1000, much higher than that of PCL (8.8).
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.