994 resultados para Heat integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an alternative model to deal with the problem of optimal energy consumption minimization of non-isothermal systems with variable inlet and outlet temperatures. The model is based on an implicit temperature ordering and the “transshipment model” proposed by Papoulias and Grossmann (1983). It is supplemented with a set of logical relationships related to the relative position of the inlet temperatures of process streams and the dynamic temperature intervals. In the extreme situation of fixed inlet and outlet temperatures, the model reduces to the “transshipment model”. Several examples with fixed and variable temperatures are presented to illustrate the model's performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimal integration between heat and work may significantly reduce the energy demand and consequently the process cost. This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs) in which the pressure levels of the process streams can be adjusted to enhance the heat integration. A superstructure is proposed for the HEN design with pressure recovery, developed via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation. The process conditions (stream temperature and pressure) must be optimized. Furthermore, the approach allows for coupling of the turbines and compressors and selection of the turbines and valves to minimize the total annualized cost, which consists of the operational and capital expenses. The model is tested for its applicability in three case studies, including a cryogenic application. The results indicate that the energy integration reduces the quantity of utilities required, thus decreasing the overall cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação foi realizada no âmbito do Mestrado em Engenharia Química no ramo de Otimização Energética na Indústria Química, do Instituto Superior de Engenharia do Porto. O estudo energético foi desenvolvido na empresa Petrogal, S.A, na Refinaria de Matosinhos, avaliando a possível racionalização energética do processo existente na Fábrica de Aromáticos. Os objetivos propostos basearam-se na realização de uma integração energética à unidade de pré-destilação, denominada por U-0100, que se encontra instalada na Fábrica de Aromáticos. Pretende-se, de uma forma geral, o reaproveitamento máximo da energia do processo, diminuindo o recurso a utilidades externas. Para tal recorreu-se à metodologia da análise do ponto de estrangulamento, designada por tecnologia Pinch. Numa primeira fase da otimização foi necessário conhecer todo o processo em causa e os conceitos associados à tecnologia aplicada. Após contactar com o processo procedeu-se ao levantamento energético do mesmo, referente ao ano 2013. Nesta etapa foram recolhidos todos os dados considerados relevantes para a quantificação energética das correntes e das utilidades empregues. Depois da recolha efetuou-se a integração energética estabelecendo um ∆Tmin ótimo para o processo de 5°C, após uma prévia análise da influência deste parâmetro sobre os consumos. Constatou-se que atualmente o processo de separação opera com uma taxa de recuperação energética de 16,8% da energia total, sendo a restante energia introduzida por utilidades externas. Com a análise do ponto de estrangulamento concluiu-se que a unidade de pré - destilação U-0100 se encontra integrada energeticamente, não sendo essencial proceder a qualquer modificação à mesma. No entanto sugere-se como trabalho futuro um estudo técnico e económico da implementação de um pré-aquecedor de ar, necessário ao processo de combustão que se dá na fornalha H-0101. Isto tendo em vista o reaproveitamento máximo da corrente, gases de combustão, que é desperdiçada para o meio ambiente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we propose a new methodology for the large scale optimization and process integration of complex chemical processes that have been simulated using modular chemical process simulators. Units with significant numerical noise or large CPU times are substituted by surrogate models based on Kriging interpolation. Using a degree of freedom analysis, some of those units can be aggregated into a single unit to reduce the complexity of the resulting model. As a result, we solve a hybrid simulation-optimization model formed by units in the original flowsheet, Kriging models, and explicit equations. We present a case study of the optimization of a sour water stripping plant in which we simultaneously consider economics, heat integration and environmental impact using the ReCiPe indicator, which incorporates the recent advances made in Life Cycle Assessment (LCA). The optimization strategy guarantees the convergence to a local optimum inside the tolerance of the numerical noise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (M. Sc.)--University of Illinois at Urbana-Champaign.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of melting process in a Phase Change Material (PCM)-based heat sink with plate fin type thermal conductivity enhancers (TCEs) is numerically studied in this paper. Detailed parametric investigations are performed to find the effect of aspect ratio of enclosure and the applied heat flux on the thermal performance of the heat sinks. Various non-dimensional numbers, such as Nusselt number (Nu), Rayleigh number (Ra), Stefan number (Ste) and Fourier number (Fo) based on a characteristic length scale, are identified as important parameters. The half fin thickness and the fin height are varied to obtain a wide range of aspect ratios of an enclosure. It is found that a single correlation of Nu with Ra is not applicable for all aspect ratios of enclosure with melt convection taken into account. To find appropriate length scales, enclosures with different aspect ratios are divided into three categories, viz. (a) shallow enclosure, (b) rectangular enclosure and (c) tall enclosure. Accordingly, an appropriate characteristic length scale is identified for each type of enclosure and correlation of Nu with Ra based on that characteristic length scale is developed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to reduce potential uncertainties and conservatism in welded panel analysis procedures, understanding of the relationships between welding process parameters and static strength is required. The aim of this study is to determine and characterize the key process induced properties of advanced welding assembly methods on stiffened panel local buckling and collapse performance. To this end, an in-depth experimental and computational study of the static strength of a friction stir welded fuselage skin-stiffener panel subjected to compression loading has been undertaken. Four welding process effects, viz. the weld joint width, the width of the weld Heat Affected Zone, the strength of material within the weld Heat Affected Zone and the magnitude of welding induced residual stress, are investigated. A fractional factorial experiment design method (Taguchi) has been applied to identify the relative importance of each welding process effect and investigate effect interactions on both local skin buckling and crippling collapse performance. For the identified dominant welding process effects, parametric studies have been undertaken to identify critical welding process effect magnitudes and boundaries. The studies have shown that local skin buckling is principally influenced by the magnitude of welding induced residual stress and that the strength of material in the Heat Affected Zone and the magnitude of the welding induced residual stress have the greatest influence on crippling collapse behavior.


--------------------------------------------------------------------------------

Reaxys Database Information
|

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.