1000 resultados para Heading Estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the LiDAR compass, a bounded and extremely lightweight heading estimation technique that combines a two-dimensional laser scanner and axis maps, which represent the orientations of flat surfaces in the environment. Although suitable for a variety of indoor and outdoor environments, the LiDAR compass is especially useful for embedded and real-time applications requiring low computational overhead. For example, when combined with a sensor that can measure translation (e.g., wheel encoders) the LiDAR compass can be used to yield accurate, lightweight, and very easily implementable localization that requires no prior mapping phase. The utility of using the LiDAR compass as part of a localization algorithm was tested on a widely-available open-source data set, an indoor environment, and a larger-scale outdoor environment. In all cases, it was shown that the growth in heading error was bounded, which significantly reduced the position error to less than 1% of the distance travelled.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Without an absolute position sensor (e.g., GPS), an accurate heading estimate is necessary for proper localization of an autonomous unmanned vehicle or robot. This paper introduces direction maps (DMs), which represent the directions of only dominant surfaces of the vehicle’s environment and can be created with negligible effort. Given an environment with reoccurring surface directions (e.g., walls, buildings, parked cars), lines extracted from laser scans can be matched with a DM to provide an extremely lightweight heading estimate that is shown, through experimentation, to drastically reduce the growth of heading errors. The algorithm was tested using a Husky A200 mobile robot in a warehouse environment over traverses hundreds of metres in length. When a simple a priori DM was provided, the resulting heading estimation showed virtually no error growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The map representation of an environment should be selected based on its intended application. For example, a geometrically accurate map describing the Euclidean space of an environment is not necessarily the best choice if only a small subset its features are required. One possible subset is the orientations of the flat surfaces in the environment, represented by a special parameterization of normal vectors called axes. Devoid of positional information, the entries of an axis map form a non-injective relationship with the flat surfaces in the environment, which results in physically distinct flat surfaces being represented by a single axis. This drastically reduces the complexity of the map, but retains important information about the environment that can be used in meaningful applications in both two and three dimensions. This thesis presents axis mapping, which is an algorithm that accurately and automatically estimates an axis map of an environment based on sensor measurements collected by a mobile platform. Furthermore, two major applications of axis maps are developed and implemented. First, the LiDAR compass is a heading estimation algorithm that compares measurements of axes with an axis map of the environment. Pairing the LiDAR compass with simple translation measurements forms the basis for an accurate two-dimensional localization algorithm. It is shown that this algorithm eliminates the growth of heading error in both indoor and outdoor environments, resulting in accurate localization over long distances. Second, in the context of geotechnical engineering, a three-dimensional axis map is called a stereonet, which is used as a tool to examine the strength and stability of a rock face. Axis mapping provides a novel approach to create accurate stereonets safely, rapidly, and inexpensively compared to established methods. The non-injective property of axis maps is leveraged to probabilistically describe the relationships between non-sequential measurements of the rock face. The automatic estimation of stereonets was tested in three separate outdoor environments. It is shown that axis mapping can accurately estimate stereonets while improving safety, requiring significantly less time and effort, and lowering costs compared to traditional and current state-of-the-art approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we have described the main components of a ship motion-control system and two particular motion-control problems that require wave filtering, namely, dynamic positioning and heading autopilot. Then, we discussed the models commonly used for vessel response and showed how these models are used for Kalman filter design. We also briefly discussed parameter and noise covariance estimation, which are used for filter tuning. To illustrate the performance, a case study based on numerical simulations for a ship autopilot was considered. The material discussed in this article conforms to modern commercially available ship motion-control systems. Most of the vessels operating in the offshore industry worldwide use Kalman filters for velocity estimation and wave filtering. Thus, the article provides an up-to-date tutorial and overview of Kalman-filter-based wave filtering.