957 resultados para Hard chairside reline resins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection and use of hard chairside reline resins must be made with regard to dimensional stability, which will influence the accuracy of fit of the denture base. This study compared the dimensional change of two hard chairside reline resins (Duraliner II and Kooliner) and one heat-curing denture base resin (Lucitone 550). A stainless steel mold with reference dimensions (AB, CD) was used to obtain the samples. The materials were processed according to the manufacturer's recommendations. Measurements of the dimensions were made after processing and after the samples had been stored in distilled water at 37° C for eight different periods of time. The data were recorded and then analyzed with analysis of variance. All materials showed shrinkage immediately after processing (p < 0.05). The only resin that exhibited shrinkage after 60 days of storage in water was Duraliner II; these changes could be clinically significant in regard of tissue fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to gradual resorption of the edentulous ridge bone, removable prostheses often require denture base relines to improve fit and stability. This research evaluated the bond strength between one heat-cured acrylic resin (Lucitone 550®) and two hard chairside reline resins, after two different periods of storage in water (50 h and 30 days). The bond strength was evaluated using a tensile test. The mode of failure, adhesive or cohesive, was also recorded. The results submitted to the Kruskal-Wallis test indicated that the highest tensile strengths were achieved with intact Lucitone 550® denture base resin in both periods of storage in water. After 50 h of storage in water, Duraliner II® reline material exhibited the highest bond strength to the denture base resin. After 30 days of storage in water, Duraliner II® reline resin demonstrated a significant reduction in adhesion, showing lower tensile bond strength than Kooliner® material. Both hard chairside reline materials failed adhesively across Lucitone 550® denture base resin, in both periods of time. © 1999 Blackwell Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effectiveness of microwave irradiation sterilization on hard chairside reline resins. Materials and Methods: Specimens of three reline resins (Kooliner, Tokuso Rebase, and Ufi Gel Hard) were fabricated and subjected to ethylene oxide sterilization. The specimens were then individually inoculated (107 cfu/mL) with Tryptic Soy Broth media containing one of the tested microorganisms (C albicans, S aureus, B subtilis, and P aeruginosa). After 48 hours at 37°C, the samples were vortexed for 1 minute and allowed to stand for 9 minutes, followed by a short vortex to resuspend any organisms present. After inoculation, 40 specimens of each material were immersed in 200 mL of water and subjected to microwave irradiation at 650 W for 6 minutes. Forty non-irradiated specimens were used as positive controls. Replicate specimens (25 μL) of suspension were plated at dilutions of 10-3 to 10-6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. After incubation, colonies were counted, and the data were statistically analyzed by the Kruskal-Wallis test. Twelve specimens of each material were prepared for SEM. Results: All immersed specimens showed consistent sterilization of all the individual organisms after microwave irradiation. SEM examination indicated an alteration in cell morphology after microwave irradiation. Conclusion: Microwave sterilization for 6 minutes at 650 W proved to be effective for the sterilization of hard chairside reline resins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of water bath and microwave postpolymerization treatments on the cytotoxicity of 6 hard reline acrylic resins. Materials and Methods: The materials tested were Tokuso Rebase Fast (TR), Ufi Gel Hard (UGH), Duraliner II (D), Kooliner (K), New Truliner (NT), and Light Liner (LL). LL resin was additionally tested with an air-barrier coating (LLABC). Nine disks of each material (10 × 1 mm) were made and divided into 3 groups: group 1 (no postpolymerization treatment); group 2 (postpolymerization in microwave oven); group 3 (postpolymerization in water bath at 55°C for 10 minutes). L929 cells were cultured in 96-well plates and incubated for 24 hours in Eagle's medium. Eluates prepared from the disks or medium without disks (control) replaced the medium. Cytotoxicity was assessed by both dehydrogenase succinic activity (MTT) assay and incorporation of radioactive 3H-thymidine assay. Tests were carried out in quadruplicate and repeated twice. Differences between groups were determined by analysis of variance with Tukey multiple-comparison intervals (α = .05). Results: For MTT assay, the postpolymerization treatments had no effect on the cytotoxicity of all materials (P > .05). For 3H-thymidine assay, the postpolymerization treatments significantly decreased the cytotoxicity of UGH (P < .05). The cytotoxicity of K, NT, LL, and LLABC increased after microwave irradiation (P < .05). TR, NT, and LLABC showed an increase in cytotoxicity after water bath (P < .05). Conclusion: When assessed by MTT assay, the cytotoxicity of the materials was not affected by postpolymerization treatments. 3H-Thymidine assay showed that the cytotoxicity of the resins was not improved by the postpolymerization treatments, with the exception of UGH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of 2 postpolymerization treatments on toothbrushing wear (weight loss) and surface roughness of 3 autopolymerized reline resins-Duraliner II (D) (Reliance Dental), Kooliner (K) (Coe Laboratories), and Tokuso Rebase Fast (T) (Tokuyama Dental)-and 1 heat-polymerized resin, Lucitone 550 (L) (Dentsply International). Materials and Methods: Specimens (40 x 10 x 2mm) of each material (n = 24) were prepared and divided into 3 groups: control (no postpolymerization treatment); water bath (immersion in water at 55°C); and microwave (microwave irradiation). Specimens were dried until constant weight was achieved and the surface roughness (Ra) was measured. Tests were performed in a toothbrush machine using 20,000 strokes of brushing at a weight of 200 g, with the specimens immersed in 1:1 dentifrice/water slurry. Specimens were reconditioned to constant weight and the weight loss (mg) and surface roughness were evaluated. Data were analyzed by 2-way analysis of variance and followed by Tukey test (α = .05). Results: In the control group, the weight loss of materials D and T was lower (P < .05) than that of L. No differences among materials were found after postpolymerization treatments (P > .05). The weight loss of material T (control = 0.5 mg) was significantly increased (P < .05) after postpolymerization treatments (water bath = 1.9 mg; microwave = 1.8 mg). For materials K and T, the toothbrushed surface roughness was higher (P < .05) after microwave and waterbath postpolymerization treatments. Material L showed increased surface roughness after microwave postpolymerization treatment. Conclusion: The toothbrushing wear resistance of L was not superior to the reline resins. The postpolymerization treatments did not improve the toothbrushing wear resistance of the materials and produced an increased surface roughness for materials L, K, and T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and ia heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. one of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment-control group. Kooliner acrylic resin was packed,into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin.