23 resultados para Hantaviruses
Resumo:
Hantaviruses are one of the five genera of the vector-borne virus family Bunyaviridae. While other members of the family are transmitted via arthropods, hantaviruses are carried and transmitted by rodents and insectivores. Occasional transmission to humans occurs via inhalation of aerosolized rodent excreta. When transmitted to man hantaviruses cause hemorrhagic fever with renal syndrome (HFRS, in Eurasia, mortality ~10%) and hantavirus cardiopulmonary syndrome (HCPS, in the Americas, mortality ~40%). The single-stranded, negative-sense RNA genome of hantaviruses is in segments S, M and L that respectively encode for nucleocapsid (N), glycoproteins Gn and Gc, and RNA-dependent RNA-polymerase (RdRp or L protein). The genome segments, encapsidated by N protein to form ribonucleoprotein (RNP), are enclosed inside a lipid envelope decorated by spikes formed of Gn and Gc. The focus of this study was to understand the mechanisms and interactions through which the virion is formed and maintained. We observed that when extracted from virions both Gn and Gc favor homo- over hetero-oligomerization. The minimal glycoprotein complexes extracted from virion by detergent were observed, by using ultracentrifugation and gel filtration, to be tetrameric Gn and homodimeric Gc. These results led us to suggest a model where tetrameric Gn complexes are interconnected through homodimeric Gc units to form the grid-like surface architecture described for hantaviruses. This model was found to correlate with the three-dimensional (3D) reconstruction of virion surface created using cryo-electron tomography (cryo-ET). The 3D-density map showed the spike complex formed of Gn and Gc to be 10 nm high and to display a four-fold symmetry with dimensions of 15 nm times 15 nm. This unique square-shaped complex on a roughly round virion creates a hitch for the assembly, since a sphere cannot be broken into rectangles. Thus additional interactions are likely required for the virion assembly. In cryo-ET we observed that the RNP makes occasional contacts to the viral membrane, suggesting an interaction between the spike and RNP. We were able to demonstrate this interaction using various techniques, and showed that both Gn and Gc contribute to the interaction. This led us to suggest that in addition to the interactions between Gn and Gc, also the interaction between spike and RNP is required for assembly. We found galectin-3 binding protein (referred to as 90K) to co-purify with the virions and showed an interaction between 90K and the virion. Analysis of plasma samples taken from patients hospitalized for Puumala virus infection showed increased concentrations of 90K in the acute phase and the increased 90K level was found to correlate with several parameters that reflect the severity of acute HFRS. The results of these studies confirmed, but also challenged some of the dogmas on the structure and assembly of hantaviruses. We confirmed that Gn and RNP do interact, as long assumed. On the other hand we demonstrated that the glycoproteins Gn and Gc exist as homo-oligomers or appear in large hetero-oligomeric complexes, rather than form primarily heterodimers as was previously assumed. This work provided new insight into the structure and assembly of hantaviruses.
Resumo:
Current knowledge of the pathogenic hantavirus indicates that wild rodents are its primary natural reservoir. Specific primers to detect the presence of viral genomes were developed using an SYBR-Green-based real-time RT-PCR protocol. One hundred sixty-four rodents native to the Atlantic Forest biome were captured in So Paulo State, Brazil, and their tissues were tested. The presence of hantavirus RNA was detected in sixteen rodents: three specimens of Akodon montensis, three of Akodon cursor, two of Necromys lasiurus, one of Juliomys sp., one of Thaptomys nigrita, five of Oligoryzomys nigripes, and one of Oryzomys sp. This SYBR Green real-time RT-PCR method for detection of hantavirus may be useful for surveying hantaviruses in Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hantaviruses belong to the Bunyaviridae family, which consists of vector-borne viruses. These viruses can provoke two infection types: hemorrhagic fever with renal syndrome (HFRS) - which occurs in the Old World - and hantavirus cardiopulmonary syndrome (HCPS) - an emergent zoonosis that can be found in many countries of the western hemisphere. Rodents are hantavirus reservoirs and each species seems to host a different virus type. Humans acquire the infection by inhaling contaminated aerosol particles eliminated by infected animals. The factors involved in the emergence of hantavirus infections in the human population include ecological modifications and changes in human activities. The most important risk factor is contact between man and rodents, as a result of agricultural, forestry or military activities. Rodent control remains the primary strategy for preventing hantavirus diseases, including via health education and hygienic habits.
Resumo:
Newly emerged hantaviruses replicate primarily in the pulmonary endothelium, cause acute platelet loss, and result in hantavirus pulmonary syndrome (HPS). We now report that specific integrins expressed on platelets and endothelial cells permit the cellular entry of HPS-associated hantaviruses. Infection with HPS-associated hantaviruses, NY-1 and Sin Nombre virus (SNV), is inhibited by antibodies to β3 integrins and by the β3-integrin ligand, vitronectin. In contrast, infection with the nonpathogenic (no associated human disease) Prospect Hill virus was inhibited by fibronectin and β1-specific antibodies but not by β3-specific antibodies or vitronectin. Transfection with recombinant αIIbβ3 or αvβ3 integrins rendered cells permissive to NY-1 and SNV but not Prospect Hill virus infection, indicating that αIIbβ3 and αvβ3 integrins mediate the entry of NY-1 and SNV hantaviruses. Furthermore, entry is divalent cation independent, not blocked by arginine-glycine-aspartic acid peptides and still mediated by, ligand-binding defective, αIIbβ3-integrin mutants. Hence, NY-1 and SNV entry is independent of β3 integrin binding to physiologic ligands. These findings implicate integrins as cellular receptors for hantaviruses and indicate that hantavirus pathogenicity correlates with integrin usage.
Resumo:
Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne viral disease characterized by fever, hemorrhagic, kidney damage and hypotension, is caused by different species of hantaviruses [1]. Every year, HFRS affects thousands of people in Asia, and more than 90% of these cases are reported in China [2, 3]. Due to its high fatality, HFRS has attracted considerable research attention, and prior studies have predominantly focused on quantifying HFRS morbidity [4], identifying high risk areas [5] and populations [6], or exploring peak time of HFRS occurrence [3]. To date, no study has assessed the seasonal amplitude of HFRS in China, even though it reveals the seasonal fluctuation and thus may provide pivotal information on the possibility of HFRS outbreaks.
Resumo:
Background Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by many serotypes of hantaviruses. In China, HFRS has been recognized as a severe public health problem with 90% of the total reported cases in the world. This study describes the spatiotemporal dynamics of HFRS cases in China and identifies the regions, time, and populations at highest risk, which could help the planning and implementation of key preventative measures. Methods Data on all reported HFRS cases at the county level from January 2005 to December 2012 were collected from Chinese Center for Disease Control and Prevention. Geographic Information System-based spatiotemporal analyses including Local Indicators of Spatial Association and Kulldorff's space-time scan statistic were performed to detect local high-risk space-time clusters of HFRS in China. In addition, cases from high-risk and low-risk counties were compared to identify significant demographic differences. Results A total of 100,868 cases were reported during 2005–2012 in mainland China. There were significant variations in the spatiotemporal dynamics of HFRS. HFRS cases occurred most frequently in June, November, and December. There was a significant positive spatial autocorrelation of HFRS incidence during the study periods, with Moran's I values ranging from 0.46 to 0.56 (P<0.05). Several distinct HFRS cluster areas were identified, mainly concentrated in northeastern, central, and eastern of China. Compared with cases from low-risk areas, a higher proportion of cases were younger, non-farmer, and floating residents in high-risk counties. Conclusions This study identified significant space-time clusters of HFRS in China during 2005–2012 indicating that preventative strategies for HFRS should be particularly focused on the northeastern, central, and eastern of China to achieve the most cost-effective outcomes.
Resumo:
Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome. Finland has the highest documented incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in other Scandinavian countries, Central Europe and the European part of Russia. PUUV belongs to the genus Hantavirus in the family Bunyaviridae. Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved with their carrier rodents for millions of years and these host animals are the evolutionary scene of hantaviruses. In this study, PUUV sequences were recovered from bank voles captured in Denmark and Russian Karelia to study the evolution of PUUV in Scandinavia. Phylogenetic analysis of these strains showed a geographical clustering of genetic variants following the presumable migration pattern of bank voles during the recolonization of Scandinavia after the last ice age approximately 10 000 years ago. The currently known PUUV genome sequences were subjected to in-depth phylogenetic analyses and the results showed that genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV seems to evolve quite slowly following a molecular clock. We also found evidence for recombination in the evolution of some genetic lineages of PUUV. Viral microevolution was studied in controlled virus transmission in colonized bank voles and changes in quasispecies dynamics were recorded as the virus was transmitted from one animal to another. We witnessed PUUV evolution in vivo, as one synonymous mutation became repeatedly fixed in the viral genome during the experiment. The detailed knowledge on the PUUV diversity was used to establish new sensitive and specific detection methods for this virus. Direct viral invasion of the hypophysis was demonstrated for the first time in a lethal case of NE. PUUV detection was done by immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue samples.
Resumo:
Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.
Resumo:
Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.
Resumo:
Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.
Resumo:
A Síndrome Pulmonar por Hantavírus (SPH) vem sendo diagnosticada na Amazônia brasileira desde 1995. Até dezembro de 2010 já foram diagnosticados 289 casos na Amazônia brasileira, registrados nos estados do Mato Grosso, Pará, Maranhão, Amazonas e Rondônia. O objetivo geral do presente estudo foi caracterizar geneticamente cepas de hantavirus circulantes nesses estados. Foram utilizadas amostras de vísceras de roedores silvestres positivos para anticorpos IgG contra hantavírus, capturados em estudos ecoepidemiológicos, realizados nos municípios de Itacoatiara/AM, Alto Paraíso/RO e Campo Novo do Parecis/MT, e soro/sangue de casos humanos de SPH provenientes dos municípios da área de influência da BR-163, nos estados do Pará e Mato Grosso, Tomé-Açu/PA, Tangará da Serra/MT, além de pool de vísceras de um óbito procedente de Anajatuba/MA. As amostras foram submetidas à extração de RNA viral, seguida das reações de RT-Hemi-Nested-PCR para amostras de roedores, RT-Nested-PCR para amostras de humanos e sequenciamento nucleotídico, utilizando o método de Sanger e o pirossequenciamento, sendo, posteriormente, verificados quanto a aspectos como, identidade (BLAST search), similaridade (SimPlot) e homologia nucleotídica e aminoacídica com outros hantavírus (Clustal W). Foram obtidas as sequências parciais dos hantavírus em cinco roedores da espécie Oligoryzomys microtis (n=2 de Itacoatiara/AM; n=3 de Alto Paraíso/RO) e em oito amostras de humanos (n=1 de Tomé-Açu/PA; n=1 de Altamira/Cachoeira da Serra; n=1 de Novo Progresso/PA; n=1 de Guarantã do Norte/MT; n=1 de Anajatuba/MA e n=3 de Altamira/Castelo dos Sonhos). Com a utilização da estratégia do pirossequenciamento foram obtidas as sequências completas do gene N, S-RNA dos hantavírus em três roedores (n=2 de Alto Paraíso/RO e n=1 de Campo Novo do Parecis/MT) e dois casos humanos (n=1 de Tangará da Serra/MT e n=1 de Novo Progresso/PA). As análises das sequências completas demonstraram a presença de ORFs para uma possível proteína NSs, já descrita para outros hantavírus. As análises filogenéticas entre as sequências obtidas neste estudo e de outros hantavírus disponíveis no GenBank sugerem que, o vírus Castelo dos Sonhos é o responsável pelos casos de SPH em municípios da área de influência da BR-163, obtendo-se, pela primeira vez, a sequência completa desse vírus em roedor Oligoryzomys utiaritensis, capturado no Mato Grosso; confirmou-se a circulação contínua do vírus Laguna Negra-like, associado aos casos de SPH no estado do Mato Grosso; o vírus Mamoré-like foi detectado pela primeira vez em roedores O.microtis, nos estado do Amazonas e Rondônia, porém não associado a casos humanos; o vírus Anajatuba foi o responsável por um caso de óbito proveniente do Maranhão. Esse trabalho servirá como suporte para estudos moleculares e epidemiológicos futuros, pois, fornece dados inéditos acerca da transmissão das hantaviroses na Amazônia brasileira.