989 resultados para Hamilton cycle decomposition
Resumo:
The circulant graph Sn, where S ⊆ Zn \ {0}, has vertex set Zn and edge set {{x, x + s}|x ∈ Zn, s ∈ S}. It is shown that there is a Hamilton cycle decomposition of every 6-regular circulant graph Sn in which S has an element of order n.
Resumo:
For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.
Resumo:
An m-cycle system of order upsilon is a partition of the edge-set of a complete graph of order upsilon into m-cycles. The mu -way intersection problem for m-cycle systems involves taking mu systems, based on the same vertex set, and determining the possible number of cycles which can be common to all mu systems. General results for arbitrary m are obtained, and detailed intersection values for (mu, m) = (3, 4), (4, 5),(4, 6), (4, 7), (8, 8), (8, 9). (For the case (mu, m)= (2, m), see Billington (J. Combin. Des. 1 (1993) 435); for the case (Cc,m)=(3,3), see Milici and Quattrochi (Ars Combin. A 24 (1987) 175. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A k-cycle decomposition of order n is a partition of the edges of the complete graph on n vertices into k-cycles. In this report a backtracking algorithm is developed to count the number of inequivalent k-cycle decompositions of order n.
Resumo:
A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and (i) - n(j) less than or equal to 1 for any i, j is an element of {1, 2,..., k}, then C is equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in C is equitably k-coloured. For m = 4,5 and 6, we completely settle the existence problem for equitably 3-colourable m-cycle decompositions of complete graphs and complete graphs with the edges of a 1-factor removed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks.
Resumo:
Reduced form estimation of multivariate data sets currently takes into account long-run co-movement restrictions by using Vector Error Correction Models (VECM' s). However, short-run co-movement restrictions are completely ignored. This paper proposes a way of taking into account short-and long-run co-movement restrictions in multivariate data sets, leading to efficient estimation of VECM' s. It enables a more precise trend-cycle decomposition of the data which imposes no untested restrictions to recover these two components. The proposed methodology is applied to a multivariate data set containing U.S. per-capita output, consumption and investment Based on the results of a post-sample forecasting comparison between restricted and unrestricted VECM' s, we show that a non-trivial loss of efficiency results whenever short-run co-movement restrictions are ignored. While permanent shocks to consumption still play a very important role in explaining consumption’s variation, it seems that the improved estimates of trends and cycles of output, consumption, and investment show evidence of a more important role for transitory shocks than previously suspected. Furthermore, contrary to previous evidence, it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations.
Resumo:
Lucas (1987) has shown a surprising result in business-cycle research, that the welfare cost of business cycles are relatively small. Using standard assumptions on preferences and a reasonable reduced form for consumption, we computed these welfare costs for the pre- and post-WWII era, using three alternative trend-cycle decomposition methods. The post-WWII period is very era this basic result is dramatically altered. For the Beveridge and Nelson decomposition, and reasonable preference parameter and discount values, we get a compensation of about 5% of consumption, which is by all means a sizable welfare cost (about US$ 1,000.00 a year).
Resumo:
A 4-cycle in a tripartite graph with vertex partition {V-1, V-2, V-3} is said to be gregarious if it has at least one vertex in each V-i, 1 less than or equal to i less than or equal to 3. In this paper, necessary and sufficient conditions are given for the existence of an edge-disjoint decomposition of any complete tripartite graph into gregarious 4-cycles.
Resumo:
The spectrum for the decomposition of lambda K-v into 3-perfect 9-cycles is found for all lambda > 1. (The case lambda = 1 was dealt with in an earlier paper by the authors and Lindner.) The necessary conditions for the existence of a suitable decomposition turn out to be sufficient.
Resumo:
A 4-wheel is a simple graph on 5 vertices with 8 edges, formed by taking a 4-cycle and joining a fifth vertex (the centre of the 4-wheel) to each of the other four vertices. A lambda -fold 4-wheel system of order n is an edge-disjoint decomposition of the complete multigraph lambdaK(n) into 4-wheels. Here, with five isolated possible exceptions when lambda = 2, we give necessary and sufficient conditions for a lambda -fold 4-wheel system of order n to be transformed into a lambda -fold Ccyde system of order n by removing the centre vertex from each 4-wheel, and its four adjacent edges (retaining the 4-cycle wheel rim), and reassembling these edges adjacent to wheel centres into 4-cycles.