10 resultados para Haemogregarina Clelandi
Resumo:
The phylogeny of representative haemozoan species of the phylum Apicomplexa was reconstructed by cladistic analyses of ultrastructural and life-cycle characteristics. The analysis incorporated 4 apicomplexans previously not included in phylogenetic reconstructions: Haemogregarina clelandi from the Brisbane River tortoise (Emydura signata), Hepatozoon sp. from the slaty grey snake (Stegonotus cucullatus), Hepatozoon (Haemogregarina) boigae from the brown tree snake (Boiga irregularis), and Haemoproteus chelodina from the saw-shelled tortoise (Elseya latisternum). There was no apparent correlation between parasite phylogeny and that of their vertebrate hosts, but there appeared to be some relationship between parasites and their intermediate hosts, suggestive of parasite/vector co-evolution.
Resumo:
Blood smears from 27 turtles (15 Emydura signata, nine Elseya latisternum, and three Chelodina longicollis) from southeastern Queensland (Australia) were examined for infections by hemoprotozoan parasites between January and June 1999. Infections were found in 26 (96%) of the turtles. Twenty five (93%) were infected with the adeleorin coccidian Haemogregarina clelandi, eight (30%) with the hemosporidian Haemoproteus chelodinae, 11 (41%) with the kinetoplastid flagellate Trypanosoma chelodinae, and eight (30%) with a novel Trypanosoma sp. Despite the high prevalence and intensity of infections, there was no evidence of clinical disease in any of the turtles.
Resumo:
Cleaning behaviour has generally been viewed from the cleaner or client's point of view. Few studies, however, have examined cleaning behaviour from the parasites' perspective, yet they are the equally-important third players in such associations. All three players are likely to have had their evolution affected by the association. As cleaner organisms are important predators of parasites, cleaners are likely to have an important effect on their prey. Little, however, is known of how parasites are affected by cleaning associations and the strategies that parasites use in response to cleaners. I examine here what parasites are involved in cleaning interactions, the effect cleaners have on parasites, the potential counter-adaptations that parasites have evolved against the predatory activities of cleaner organisms, the potential influence of cleaners on the life history traits of parasites, and other factors affected by cleaners. I have found that a wide range of ectoparasites from diverse habitats have been reported to interact with a wide range of cleaner organisms. Some of the life history traits of parasites are consistent with the idea that they are in response to cleaner predation. It is clear, however, that although many cleaning systems exist their ecological role is largely unexplored. This has likely been hindered by our lack of information on the parasites involved in cleaning interactions.
Resumo:
Intraerythrocytic bodies identified as haemogregarine gamonts were found in 29% of 97 brown tree snakes (Boiga irregularis) examined during a haematological survey of reptiles in Australasia during 1994-1998. The morphological characteristics of the parasites were consistent with those of Haemogregarina boigae Mackerras, 1961, although the gamonts were slightly larger and lacked red caps but contained distinctive polar grey capsules. Gamonts did not distend host cells but laterally displaced their nuclei. They were contained within parasitophorous vacuoles and possessed typical apicomplexan organelles, including a conoid, polar rings, rhoptries and micronemes. Schizonts producing up to 30 merozoites were detected in endothelial cells of the lungs of 11 snakes. The absence of erythrocytic schizogony suggests the parasites belong to the genus Hepatozoon. Electron microscopy also revealed the presence of curious encapsulated organisms in degenerating erythrocytes. These stages did not possess apical complex organelles and were surrounded by thick walls containing circumferential junctions and interposed strips reminiscent of oocyst sutures.
Resumo:
Faz-se uma revisão das espécies de Haemogregarina, encontradas, até a presente data, em Bufo marinus L. da região Norte, Leste e Sul da Venezuela,descrevendo-se o ciclo agâmico da Haemogregarina darlingi Leger, 1918, o ciclo esquizogônico da Haemogregarina aquai Phisalix, 1930, propondo-se seja denominada Karyolysus aquai (Phisalix) por realizar o ciclo agâmico nas células endoteliais. Descreve-se a Haemogregarina legeri nov. sp. Estuda-se um Toxoplasma no sangue e vísceras de Bufo marinus L., descrevendo-se a anatomia patológica dos órgãos afetados, discutindo-se o estado atual da sistemática das espécies de Toxoplasma, parasitos de vertebrados poikilotermos, propondo-se o nome de Toxoplasma serpai nov. sp. para êste protozoário.
Resumo:
The main object of the present paper is to furnish a brief account to the knowledgement of Protozoa parasitic in common Brazilian frog of the genus Leptodactylus for general students in Zoology and for investigators that use this frog as a laboratory animal. Hepatozoon leptodactyli (Haemogregarina leptodactyli) was found in two species of frogs - Leptodactylus ocellatus and L. pentadactylus - in which develop schizogony whereas sporogony occurs in the leech Haementeria lutzi as was obtainded in experimental conditions. Intracellular forms have been found in peripheral circulation, chiefly in erythrocytes, but we have found them in leukocytes too. Tissue stages were found in frog, liver, lungs, spleen, gut, brain and heart. The occurence of hemogregarine in the Central Nervous System was recorded by Costa & al,(13) and Ball (2). Some cytochemical methods were employed in attempt to differentiate gametocytes from trophozoites in the peripheral blood and to characterize the cystic membrane as well. The speorogonic cycle was developed in only one specie of leech. A brief description of the parasite is given.
Resumo:
A ocorrência de hemagregarinas no sangue dos sapos que examinamos (Bufo crucifer, B. marinus e Melanophryniscus moreirae) revelou-se extremamente rara; apenas um exemplar de B. crucifer procedente de Manguinhos (Rio de Janeiro, Guanabara) apresentou-se parasitado. As formas sanguíneas encontradas eram intra-eritrocitárias, medindo em média 10,8/ 3,6µ; não as identificamos como trofozoítos ou gametócitos e discutimos este fato. As hemácias parasitadas tinham dimensões normais, porém podiam ter o núcleo deslocado. Supomos ser esta a primeira referência a hemogregarinas neste hospedeiro. Não encontramos identidade entre as formas que descrevemos e aquelas referidas em outras espécies de sapos; fornecemos uma lista das hemogregarinas achadas nestes hospedeiros. Denominamos provisoriamente os parasitos que encontramos Haemogregarina "sensu lato", até que novos dados sobre seu ciclo evolutivo sejam conhecidos.
Resumo:
Little is known of the blood parasites of coral reef fishes and nothing of how they are transmitted. We examined 497 fishes from 22 families, 47 genera, and 78 species captured at Lizard Island, Australia, between May 1997 and April 2003 for hematozoa and ectoparasites. We also investigated whether gnathiid isopods might serve as potential vectors of fish hemogregarines. Fifty-eight of 124 fishes caught in March 2002 had larval gnathiid isopods, up to 80 per host fish, and these were identified experimentally to be of 2 types, Gnathia sp. A and Gnathia sp. B. Caligid copepods were also recorded but no leeches. Hematozoa, found in 68 teleosts, were broadly hemogregarines of 4 types and an infection resembling Haemohormidium. Mixed infections (hemogregarine with Haemohormidium) were also observed, but no trypanosomes were detected in blood films. The hemogregarines were identified as Haemogregarina balistapi n. sp., Haemogregarina tetraodontis, possibly Haemogregarina bigemina, and an intraleukocytic hemogregarine of uncertain status. Laboratory-reared Gnathia sp. A larvae, fed experimentally on bruslitail tangs, the latter heavily infected with the H. bigemina-like hemogregarine, contained hemogregarine gamonts and possibly young oocysts up to 3 days postfeeding, but no firm evidence that gnathiids transmit hemogregarines at Lizard Island was obtained.