844 resultados para Habitat extension
Resumo:
So Paulo is the most developed state in Brazil and contains few fragments of native ecosystems, generally surrounded by intensive agriculture lands. Despite this, some areas still shelter large native animals. We aimed at understanding how medium and large carnivores use a mosaic landscape of forest/savanna and agroecosystems, and how the species respond to different landscape parameters (percentage of landcover and edge density), in a multi-scale perspective. The response variables were: species richness, carnivore frequency and frequency for the three most recorded species (Puma concolor, Chrysocyon brachyurus and Leopardus pardalis). We compared 11 competing models using Akaike`s information criterion (AIC) and assessed model support using weight of AIC. Concurrent models were combinations of landcover types (native vegetation, ""cerrado"" formations, ""cerrado"" and eucalypt plantation), landscape feature (percentage of landcover and edge density) and spatial scale. Herein, spatial scale refers to the radius around a sampling point defining a circular landscape. The scales analyzed were 250 (fine), 1,000 (medium) and 2,000 m (coarse). The shape of curves for response variables (linear, exponential and power) was also assessed. Our results indicate that species with high mobility, P. concolor and C. brachyurus, were best explained by edge density of the native vegetation at a coarse scale (2,000 m). The relationship between P. concolor and C. brachyurus frequency had a negative power-shaped response to explanatory variables. This general trend was also observed for species richness and carnivore frequency. Species richness and P. concolor frequency were also well explained by a second concurrent model: edge density of cerrado at the fine (250 m) scale. A different response was recorded for L. pardalis, as the frequency was best explained for the amount of cerrado at the fine (250 m) scale. The curve of response was linearly positive. The contrasting results (P. concolor and C. brachyurus vs L. pardalis) may be due to the much higher mobility of the two first species, in comparison with the third. Still, L. pardalis requires habitat with higher quality when compared with other two species. This study highlights the importance of considering multiple spatial scales when evaluating species responses to different habitats. An important and new finding was the prevalence of edge density over the habitat extension to explain overall carnivore distribution, a key information for planning and management of protected areas.
Resumo:
In the present paper, we report on the occurrence of the cockroach Pycnoscelus surinamensis (Linnaeus, 1758) in Brachymyrmex cordemoyi Forel, 1895 nests, indicating a possible symbiosis between these two species. Also, the finding of intradomicile P. surinamensis nymphs may indicate this species is extending its habitat to human habitations, i.e. changing its ecological category from peridomestic to domestic.
Resumo:
"October 1990."
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
New records of the Rufous-faced Crake, Laterallus xenopterus (Gruiformes: Rallidae) in Brazil and observations about its habitat. The Rufous-faced Crake, Laterallus xenopterus, is a bird that is rarely spotted at Paraguay, central Brazil, and central Bolivia. There are known species records at the Brazilian states of Distrito Federal, Sao Paulo, and Minas Gerais. Here, we provide information about new areas of occurrence for this species in Brazil and detailed observations of its habitats. In October 2012, two individuals were registered in the municipality of Cristalina, state of Goias. In December 2012, the species was found in a new locality of Distrito Federal and at the municipality of Patrocinio, Minas Gerais. In February 2013, a new record for this species was obtained in the municipality of Itiquira, Mato Grosso. In all occasions, the bird was spotted in humid environments, which were characterized by the presence of grass and a thin water layer.
Resumo:
Lupinus mariae-josephae is a recently discovered endemism that is only found in alkaline-limed soils, a unique habitat for lupines, from a small area in Valencia region (Spain). In these soils, L. mariae-josephae grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. We have previously shown that L. mariae-josephae plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using L. mariae-josephae trap-plants showed the absence or near absence of L. mariae-josephae-nodulating bacteria in ‘‘terra rossa’’ soils of Valencia outside of L. mariaejosephae plant patches, and in other ‘‘terra rossa’’ or alkaline red soils of the Iberian Peninsula and Balearic Islands outside of the Valencia L. mariae-josephae endemism region. Among the bradyrhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two strains, LmjC and LmjM3 were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural L. mariae-josephae populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. Our results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive.
Resumo:
Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.
Using the Hofstede-Gray Framework to Argue Normatively for an Extension of Islamic Corporate Reports
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.
Resumo:
Oberon-2 is an object-oriented language with a class structure based on type extension. The runtime structure of Oberon-2 is described and the low-level mechanism for dynamic type checking explained. It is shown that the superior type-safety of the language, when used for programming styles based on heterogeneous, pointer-linked data structures, has an entirely negligible cost in runtime performance.
Resumo:
Purpose. To explore the role of the neighborhood environment in supporting walking Design. Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting. The Brisbane City Local Government Area, Australia, 2007. Subjects. Brisbane residents aged 40 to 65 years. Measures. Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis. The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results. After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion. The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.