886 resultados para Haar wavelet transfor
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
Latent semantic indexing (LSI) is a technique used for intelligent information retrieval (IR). It can be used as an alternative to traditional keyword matching IR and is attractive in this respect because of its ability to overcome problems with synonymy and polysemy. This study investigates various aspects of LSI: the effect of the Haar wavelet transform (HWT) as a preprocessing step for the singular value decomposition (SVD) in the key stage of the LSI process; and the effect of different threshold types in the HWT on the search results. The developed method allows the visualisation and processing of the term document matrix, generated in the LSI process, using HWT. The results have shown that precision can be increased by applying the HWT as a preprocessing step, with better results for hard thresholding than soft thresholding, whereas standard SVD-based LSI remains the most effective way of searching in terms of recall value.
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.
Resumo:
We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently
Resumo:
In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest
Resumo:
Le wavelet sono una nuova famiglia di funzioni matematiche che permettono di decomporre una data funzione nelle sue diverse componenti in frequenza. Esse combinano le proprietà dell’ortogonalità, il supporto compatto, la localizzazione in tempo e frequenza e algoritmi veloci. Sono considerate, perciò, uno strumento versatile sia per il contenuto matematico, sia per le applicazioni. Nell’ultimo decennio si sono diffuse e imposte come uno degli strumenti migliori nell’analisi dei segnali, a fianco, o addirittura come sostitute, dei metodi di Fourier. Si parte dalla nascita di esse (1807) attribuita a J. Fourier, si considera la wavelet di A. Haar (1909) per poi incentrare l’attenzione sugli anni ’80, in cui J. Morlet e A. Grossmann definiscono compiutamente le wavelet nel campo della fisica quantistica. Altri matematici e scienziati, nel corso del Novecento, danno il loro contributo a questo tipo di funzioni matematiche. Tra tutti emerge il lavoro (1987) della matematica e fisica belga, I. Daubechies, che propone le wavelet a supporto compatto, considerate la pietra miliare delle applicazioni wavelet moderne. Dopo una trattazione matematica delle wavalet, dei relativi algoritmi e del confronto con il metodo di Fourier, si passano in rassegna le principali applicazioni di esse nei vari campi: compressione delle impronte digitali, compressione delle immagini, medicina, finanza, astonomia, ecc. . . . Si riserva maggiore attenzione ed approfondimento alle applicazioni delle wavelet in campo sonoro, relativamente alla compressione audio, alla rimozione del rumore e alle tecniche di rappresentazione del segnale. In conclusione si accenna ai possibili sviluppi e impieghi delle wavelet nel futuro.
Resumo:
WaveTrack é un'implementazione ottimizzata di un algoritmo di pitch tracking basato su wavelet, nello specifico viene usata la trasformata Fast Lifting Wavelet Transform con la wavelet di Haar. La libreria è stata scritta nel linguaggio C e tra le sue peculiarità può vantare tempi di latenza molto bassi, un'ottima accuratezza e una buona flessibilità d'uso grazie ad alcuni parametri configurabili.
Resumo:
Questo elaborato si concentra sullo studio della trasformata di Fourier e della trasformata Wavelet. Nella prima parte della tesi si analizzano gli aspetti fondamentali della trasformata di Fourier. Si definisce poi la trasformata di Fourier su gruppi abeliani finiti, richiamando opportunamente la struttura di tali gruppi. Si mostra che calcolare la trasformata di Fourier nel quoziente richiede un minor numero di operazioni rispetto a calcolarla direttamente nel gruppo di partenza. L'ultima parte dell'elaborato si occupa dello studio delle Wavelet, dette ondine. Viene presentato quindi il sistema di Haar che permette di definire una funzione come serie di funzioni di Haar in alternativa alla serie di Fourier. Si propone poi un vero e proprio metodo per la costruzione delle ondine e si osserva che tale costruzione è strettamente legata all'analisi multirisoluzione. Un ruolo cruciale viene svolto dall'identità di scala, un'identità algebrica che permette di definire certi coefficienti che determinano completamente le ondine. Interviene poi la trasformata di Fourier che riduce la ricerca dei coefficienti sopra citati, alla ricerca di certe funzioni opportune che determinano esplicitamente le Wavelet. Non tutte le scelte di queste funzioni sono accettabili. Ci sono vari approcci, qui viene presentato l'approccio di Ingrid Daubechies. Le Wavelet costituiscono basi per lo spazio di funzioni a quadrato sommabile e sono particolarmente interessanti per la decomposizione dei segnali. Sono quindi in relazione con l'analisi armonica e sono adottate in un gran numero di applicazioni. Spesso sostituiscono la trasformata di Fourier convenzionale.
Resumo:
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify