44 resultados para HYPEROXIA
Resumo:
The South American lungfish (Lepidosiren paradoxa) has an arterial P(O2), (Pa(O2)) as high as 70-100 mm Hg, corresponding to Hb-O(2) saturations from 90% to 95%, which indicates a moderate cardiovascular right to left (R-L) shunt. In hyperoxia (50% O(2)), we studied animals in: (1) aerated water combined with aerial hyperoxia, which increased Pa(O2) from 78 +/- 2 to 114 +/- 3 mm Hg and (2) and aquatic hyperoxia (50% O(2)) combined room air, which gradually increased Pa(O2) from 75 +/- 4 mm Hg to as much as 146 +/- 10 mm Hg. Further, the hyperoxia (50%) depressed pulmonary ventilation from 58 +/- 13 to 5.5 +/- 3.0 mLBTPS kg h(-1), and Pa(CO2) increased from 20 +/- 2 to 31 +/- 4 mm Hg, while pHa became reduced from 7.56 +/- 0.03 to 7.31 +/- 0.09. At the same time, venous P(O2) (Pv(O2)) rose from 40.0 +/- 2.3 to 46.4 +/- 1.2 mm Hg and, concomitantly, Pvco, increased from 23.2 +/- 1.1 to 32.2 +/- 0.5 mm Hg. R-L shunts were estimated to about 19%, which is moderate when compared to most amphibians. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Revista Portuguesa de Pneumologia. VIII(3): 223-235.
Resumo:
To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O₂, 80% O₂ at Denver's altitude, ∼65% O₂ at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O₂ rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O₂ at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy.
Resumo:
BACKGROUND: Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS: This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2-categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)-with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS: A total of 1,130 CMD samples from 36 patients-monitored for a median of 4 days-were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS: Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.
Resumo:
Several factors are associated with bronchopulmonary dysplasia. Among them, hyperoxia and lung immaturity are considered to be fundamental; however, the effect of malnutrition is unknown. Our objective was to evaluate the effects of 7 days of postnatal malnutrition and hyperoxia on lung weight, volume, water content, and pulmonary morphometry of premature rabbits. After c-section, 28-day-old New Zealand white rabbits were randomized into four groups: control diet and room air (CA, N = 17), control diet and ≥95% O2 (CH, N = 17), malnutrition and room air (MA, N = 18), and malnutrition and ≥95% O2 (MH, N = 18). Malnutrition was defined as a 30% reduction of all the nutrients provided in the control diet. Treatments were maintained for 7 days, after which histological and morphometric analyses were conducted. Lung slices were stained with hematoxylin-eosin, modified orcein-resorcin or picrosirius. The results of morphometric analysis indicated that postnatal malnutrition decreased lung weight (CA: 0.83 ± 0.19; CH: 0.96 ± 0.28; MA: 0.65 ± 0.17; MH: 0.79 ± 0.22 g) and water content, as well as the number of alveoli (CA: 12.43 ± 3.07; CH: 8.85 ± 1.46; MA: 7.33 ± 0.88; MH: 6.36 ± 1.53 x 10-3/mm) and elastic and collagen fibers. Hyperoxia reduced the number of alveoli and increased septal thickening and the mean linear intercept. The reduction of alveolar number, collagen and elastic fibers was intensified when malnutrition and hyperoxia were associated. These data suggest that dietary restriction enhances the magnitude of hyperoxia-induced alveolar growth arrest and lung parenchymal remodeling. It is interesting to consider the important influence of postnatal nutrition upon lung development and bronchopulmonary dysplasia.
Resumo:
Oxygen therapy is essential for the treatment of some neonatal critical care conditions but its extrapulmonary effects have not been adequately investigated. We therefore studied the effects of various oxygen concentrations on intestinal epithelial cell function. In order to assess the effects of hyperoxia on the intestinal immunological barrier, we studied two physiological changes in neonatal rats exposed to hyperoxia: the change in intestinal IgA secretory component (SC, an important component of SIgA) and changes in intestinal epithelial cells. Immunohistochemistry and Western blot were used to detect changes in the intestinal tissue SC of neonatal rats. To detect intestinal epithelial cell growth, cells were counted, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Giemsa staining were used to assess cell survival. Immunohistochemistry was used to determine SC expression. The expression of intestinal SC in neonatal rats under hyperoxic conditions was notably increased compared with rats inhaling room air (P < 0.01). In vitro, 40% O2 was beneficial for cell growth. However, 60% O2 and 90% O2 induced rapid cell death. Also, 40% O2 induced expression of SC by intestinal epithelial cells, whereas 60% O2did not; however, 90% O2 limited the ability of intestinal epithelial cells to express SC. In vivo and in vitro, moderate hyperoxia brought about increases in intestinal SC. This would be expected to bring about an increase in intestinal SIgA. High levels of SC and SIgA would serve to benefit hyperoxia-exposed individuals by helping to maintain optimal conditions in the intestinal tract.
Resumo:
Young CBA/J mice were exposed to noise, kanamycin, and/or hyperoxia by 30 days post-gestational age in order to determine if a synergistic effect exists on ABR thresholds.
Resumo:
OBJECT: The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS: At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS: The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.
Resumo:
Early impaired cerebral blood flow (CBF) after severe head injury (SHI) leads to poor brain tissue oxygen delivery and lactate accumulation. The purpose of this investigation was to elucidate the relationship between CBF, local dialysate lactate (lact(md)) and dialysate glucose (gluc(md)), and brain tissue oxygen levels (PtiO2) under arterial normoxia. The effect of increased brain tissue oxygenation due to high fractions of inspired oxygen (FiO2) on lact(md) and CBF was explored. A total of 47 patients with SHI were enrolled in this studies (Glasgow Coma Score [GCS] < 8). CBF was first assessed in 40 patients at one time point in the first 96 hours (27 +/- 28 hours) after SHI using stable xenon computed tomography (Xe-CT) (30% inspired xenon [FiXe] and 35% FiO2). In a second study, sequential double CBF measurements were performed in 7 patients with 35% FiO2 and 60% FiO2, respectively, with an interval of 30 minutes. In a subsequent study, 14 patients underwent normobaric hyperoxia by increasing FiO2 from 35 +/- 5% to 60% and then 100% over a period of 6 hours. This was done to test the effect of normobaric hyperoxia on lact(md) and brain gluc(md), as measured by local microdialysis. Changes in PtiO2 in response to changes in FiO2 were analyzed by calculating the oxygen reactivity. Oxygen reactivity was then related to the 3-month outcome data. The levels of lact(md) and gluc(md) under hyperoxia were compared with the baseline levels, measured at 35% FiO2. Under normoxic conditions, there was a significant correlation between CBF and PtiO2 (R = 0.7; P < .001). In the sequential double CBF study, however, FiO2 was inversely correlated with CBF (P < .05). In the 14 patients undergoing the 6-hour 100% FiO2 challenge, the mean PtiO2 levels increased to 353 (87% compared with baseline), although the mean lact(md) levels decreased by 38 +/- 16% (P < .05). The PtiO2 response to 100% FiO2 (oxygen reactivity) was inversely correlated with outcome (P < .01). Monitoring PtiO2 after SHI provides valuable information about cerebral oxygenation and substrate delivery. Increasing arterial oxygen tension (PaO2) effectively increased PtiO2, and brain lact(md) was reduced by the same maneuver.
Resumo:
BACKGROUND Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. METHODS AND RESULTS In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. CONCLUSIONS Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis.
Resumo:
Heme oxygenase (HO) catalyzes the rate-limiting step in the degradation of heme to biliverdin, which is reduced by biliverdin reductase to bilirubin. Heme oxygenase-1 (HO-1) is inducible not only by its heme substrate, but also by a variety of agents causing oxidative stress. Although much is known about the regulation of HO-1 expression, the functional significance of HO-1 induction after oxidant insult is still poorly understood. We hypothesize and provide evidence that HO-1 induction serves to protect cells against oxidant stress. Human pulmonary epithelial cells (A549 cells) stably transfected with the rat HO-1 cDNA exhibit marked increases of HO-1 mRNA levels which were correlated with increased HO enzyme activity. Cells that overexpress HO-1 (A549-A4) exhibited a marked decrease in cell growth compared with wild-type A549 (A549-WT) cells or A549 cells transfected with control DNA (A549-neo). This slowing of cell growth was associated with an increased number of cells in G0/G1 phase during the exponential growth phase and decreased entry into the S phase, as determined by flow cytometric analysis of propidium iodide-stained cells and pulse experiments with bromodeoxyuridine. Furthermore, the A549-A4 cells accumulated at the G2/M phase and failed to progress through the cell cycle when stimulated with serum, whereas the A549-neo control cells exhibited normal cell cycle progression. Interestingly, the A549-A4 cells also exhibited marked resistance to hyperoxic oxidant insult. Tin protoporphyrin, a selective inhibitor of HO, reversed the growth arrest and ablated the increased survival against hyperoxia observed in the A549-A4 cells overexpressing HO-1. Taken together, our data suggest that overexpression of HO-1 results in cell growth arrest, which may facilitate cellular protection against non-heme-mediated oxidant insult such as hyperoxia.
Resumo:
Extracellular superoxide dismutase (EC-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) is a secreted Cu- and Zn-containing tetrameric glycoprotein, the bulk of which is bound to heparan sulfate proteoglycans in the interstitium of tissues. To test the function of EC-SOD in vivo, mice carrying a targeted disruption of the EC-SOD gene were generated. The EC-SOD null mutant mice develop normally and remain healthy until at least 14 months of age. No compensatory induction of other SOD isoenzymes or other antioxidant enzymes was observed. When stressed by exposure to > 99% oxygen, the EC-SOD null mutant mice display a considerable reduction in survival time compared to wild-type mice and an earlier onset of severe lung edema. These findings suggest that while under normal physiological conditions other antioxidant systems may substitute for the loss of EC-SOD; when the animal is stressed these systems are unable to provide adequate protection.
Resumo:
Inhibition of carotid body (CB) function is the main mechanism involved in the attenuation of respiratory drive observed during hyperoxia However, only a few studies at 5 0 atmospheres absolutes (ATA) have analyzed carotid body structure or function in hyperbaric oxygenation (HBO(2)) situations We hypothesized that rats will present CB structural alterations when exposed to different lower hyperbaric oxygen doses enough to alter their chemosensory response to hypoxia Methods - Twenty-one adult male Wistar rats, divided into three groups, were maintained in room air or exposed to O(2) at 2 4 or 3 0 ATA for six hours Histological, ultrastructural and immunohistochemical analyses for neuronal nitric oxide synthase (nNOS) and F2-isoprostane were performed in the excised CBs Results - Histological analyses revealed signs of intracellular edema in animals exposed to both conditions, but this was more marked in the 3 0 ATA group, which showed ultrastructural alterations at the mitochondrial level There was a significant increase in the volume density of intraglomic-congested capillaries in the 3 0 ATA group associated with an arteriolar vasoconstriction In the 2 4 ATA group, there was a relative increase of glomic light cells and a decrease of glomic progenitor cells Additionally, there was a stronger immunoreactivity for F2-isoprostane in the 3 0 ATA O(2)-exposed carotid bodies The glomic cells stained positive for nNOS, but no difference was observed between the groups Our results show that high 02 exposures may induce structural alterations in glomic cells with signs of lipid peroxidation We further suggest that deviation of blood flow toward intraglomic capillaries occurs in hyperbaric hyperoxia
Resumo:
Purpose: To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). Methods: Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to similar to 90% O-2 from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. Results: Mean diameter of proximal hyaloid vessels in preterm pups was 25.44 +/- 1.98 mum; +/-1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 mum), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O-2-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 mum) and distal hyaloid vessels subsequently became enlarged and tortuous. Conclusions: Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O-2-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.