948 resultados para HYDRODYNAMICAL SIMULATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. For each model, we perform hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies for the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{X}$. We confirm that the overall baryon fraction is almost independent of the dark energy models within few percentage points. The same is true for the gas fraction. This evidence reinforces the use of galaxy clusters as cosmological probe of the matter and energy content of the Universe. We also study the $c-M$ relation in the different cosmological scenarios, using both dark matter only and hydrodynamical simulations. We find that the normalization of the $c-M$ relation is directly linked to $\sigma_{8}$ and the evolution of the density perturbations for $\Lambda$CDM, RP and SUGRA, while for EQp and EQn it depends also on the evolution of the linear density contrast. These differences in the $c-M$ relation provide another way to use galaxy clusters to constrain the underlying cosmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback from the most massive components of a young stellar cluster deeply affects the surrounding ISM driving an expanding over-pressured hot gas cavity in it. In spiral galaxies these structures may have sufficient energy to break the disk and eject large amount of material into the halo. The cycling of this gas, which eventually will fall back onto the disk, is known as galactic fountains. We aim at better understanding the dynamics of such fountain flow in a Galactic context, frame the problem in a more dynamic environment possibly learning about its connection and regulation to the local driving mechanism and understand its role as a metal diffusion channel. The interaction of the fountain with a hot corona is hereby analyzed, trying to understand the properties and evolution of the extraplanar material. We perform high resolution hydrodynamical simulations with the moving-mesh code AREPO to model the multi-phase ISM of a Milky Way type galaxy. A non-equilibrium chemical network is included to self consistently follow the evolution of the main coolants of the ISM. Spiral arm perturbations in the potential are considered so that large molecular gas structures are able to dynamically form here, self shielded from the interstellar radiation field. We model the effect of SN feedback from a new-born stellar cluster inside such a giant molecular cloud, as the driving force of the fountain. Passive Lagrangian tracer particles are used in conjunction to the SN energy deposition to model and study diffusion of freshly synthesized metals. We find that both interactions with hot coronal gas and local ISM properties and motions are equally important in shaping the fountain. We notice a bimodal morphology where most of the ejected gas is in a cold $10^4$ K clumpy state while the majority of the affected volume is occupied by a hot diffuse medium. While only about 20\% of the produced metals stay local, most of them quickly diffuse through this hot regime to great scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultraviolet and X-ray observations show evidence of outflowing gas around many active galactic nuclei. It has been proposed that some of these outflows are driven off gas infalling towards the central supermassive black hole. We perform radiative transfer calculations to compute the gas ionization state and the emergent X-ray spectra for both two- and three-dimensional (3D) hydrodynamical simulations of this outflow-from-inflow scenario. By comparison with observations, our results can be used to test the theoretical models and guide future numerical simulations. We predict both absorption and emission features, most of which are formed in a polar funnel of relatively dense (10 -10 g cm ) outflowing gas. This outflow causes strong absorption for observer orientation angles of ?35°. Particularly in 3D, the strength of this absorption varies significantly for different lines of sight owing to the fragmentary structure of the gas flow. Although infalling material occupies a large fraction of the simulation volume, we do not find that it imprints strong absorption features in the X-ray spectra since the ionization state is predicted to be very high. Thus, an absence of observed inflow absorption features does not exclude the models. The main spectroscopic consequence of the infalling gas is a Compton-scattered continuum component that partially re-fills the absorption features caused by the outflowing polar funnel. Fluorescence and scattering in the outflow are predicted to give rise to several emission features including a multicomponent Fe Ka emission complex for all observer orientations. For the hydrodynamical simulations considered, we predict both ionization states and column densities for the outflowing gas that are too high to be quantitatively consistent with well-observed X-ray absorption systems. Nevertheless, our results are qualitatively encouraging and further exploration of the model parameter space is warranted. Higher resolution hydrodynamic simulations are needed to determine whether the outflows fragment on scales unresolved in our current study, which may yield the denser lower ionization material that could reconcile the models and the observations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using hydrodynamical simulations, we show for the first time that an episode of star formation in the centre of the Milky Way, with a star formation rate (SFR) similar to 0.5 M-circle dot yr(-1) for similar to 30 Myr, can produce bubbles that resemble the Fermi bubbles (FBs), when viewed from the solar position. The morphology, extent and multiwavelength observations of FBs, especially X-rays, constrain various physical parameters such as SFR, age, and the circumgalactic medium (CGM) density. We show that the interaction of the CGM with the Galactic wind driven by star formation in the central region can explain the observed surface brightness and morphological features of X-rays associated with the FBs. Furthermore, assuming that cosmic ray electrons are accelerated in situ by shocks and/or turbulence, the brightness and morphology of gamma-ray emission and the microwave haze can be explained. The kinematics of the cold and warm clumps in our model also matches with recent observations of absorption lines through the bubbles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the diffuse X-ray luminosity (L-X) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of L-X with star formation rate (SFR) as L-X alpha SFR2 for SFR greater than or similar to 1 M-circle dot yr(-1), and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the L-X-SFR relation for low SFRs (less than or similar to few M-circle dot yr(-1)). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ aphysically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 10 g cm, as well as one high central density (5.5 × 10 g cm) and one low central density (1.0 × 10 g cm) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by postprocessing10 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding thewhite dwarf, producing a range of 56Ni masses from 0.32 to 1.11M. As a general trend, the models predict that the stableneutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (~3000×10 000 km s) in a shell surrounding a Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s, respectively. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.

Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.

Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.