70 resultados para HYALURONAN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progression of several cancers is correlated with the increased synthesis of the glycosaminoglycan, hyaluronan. Hyaluronan is synthesized at the plasma membrane by various isoforms of hyaluronan synthases (HAS). The importance of HAS2 expression in highly invasive breast cancer was characterized by the antisense inhibition of HAS2 (ASHAS2). The effect of HAS2 inhibition on cell proliferation, migration, hyaluronan metabolism, and receptor status was characterized in vitro, whereas the effect on tumorigenicity and metastasis was established in vivo. HAS2 inhibition resulted in a 24-hour lag in proliferation that was concomitant to transient arrest of 79% of the cell population in G 0-G1. Inhibition of HAS2 did not alter the expression of the other HAS isoforms, whereas hyaluronidase (HYAL2) and the hyaluronan receptor, CD44, were significantly down-regulated. ASHAS2 cells accumulated greater amounts of high molecular weight hyaluronan (>10,000 kDa) in the culture medium, whereas mock and parental cells liberated less hyaluronan of three distinct molecular weights (100, 400, and 3,000 kDa). The inhibition of HAS2 in the highly invasive MDA-MB-231 breast cancer cell line inhibited the initiation and progression of primary and secondary tumor formation following s.c. and intracardiac inoculation into nude mice, whereas controls readily established both primary and secondary tumors. The lack of primary and secondary tumor formation was manifested by increased survival times where ASHAS2 animals survived 172% longer than the control animals. Collectively, these unique results strongly implicate the central role of HAS2 in the initiation and progression of breast cancer, potentially highlighting the codependency between HAS2, CD44, and HYAL2 expression. ©2005 American Association for Cancer Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we examined a panel of human breast cancer cell lines with regard to their expression of CD44 and ability to bind and degrade hyaluronan. The cell lines expressed varying amounts of different molecular weight forms of CD44 (85-200 kDa) and, in general, those that expressed the greatest amounts of CD44 were the most invasive as judged by in vitro assays. In addition, the ability to bind and degrade hyaluronan was restricted to the cell lines expressing high levels of CD44, and both these functions were blocked by an antibody to CD44 (Hermes-1). Moreover, the rate of [3H]hyaluronan degradation was highly correlated with the amount of CD44 (r = 0.951, P < 0.0001), as well as with the invasive potential of the cells. Scatchard analysis of the [3H]hyaluronan binding of these cells revealed the existence of significant differences in both their binding capacity and their dissociation constant. To determine the source of this deviation, the different molecular weight forms of CD44 were partially separated by gel filtration chromatography. In all cell lines, the 85 kDa form was able to bind hyaluronan, although with different affinities. In contrast, not all of the high molecular weight forms of CD44 had this ability. These results illustrate the diversity of CD44 molecules in invasive tumor cells, and suggest that one of their major functions is to degrade hyaluronan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
The role endogenously synthesized hyaluronan plays in myogenesis is not yet known.

Results
Hyaluronan synthase genes were expressed during skeletal muscle growth and regeneration; inhibiting these synthases prevents myoblast differentiation and fusion.

Conclusion
Endogenous hyaluronan synthesis is required for myogenic differentiation.

Significance
The necessity for hyaluronan in myogenesis has implications when considering promoting muscle growth or regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Preeclampsia (PE) is a specific syndrome of pregnancy clinically identified by hypertension and proteinuria from the 20th week of gestation associated with a systemic inflammatory response and oxidative stress. While pro-inflammatory cytokines have been extensively studied in PE, other factors in the circulation that also influence the magnitude of inflammation have received much less attention. The present study compared serum concentrations of five immune-regulatory compounds in normotensive pregnant women and in women with gestational hypertension (GH) or PE. Methods: Sixty women with PE, 53 with GH and 40 normotensive women paired by gestational age were evaluated. Sera were evaluated for concentrations of extracellular matrix metalloproteinase inducer (EMMPRIN), hyaluronan, gelsolin, visfatin and histone 2B by ELISA. Differences between groups were analyzed by nonparametric tests, with a significance level of 5 %. Results: Increased levels of EMMPRIN and hyaluronan were present in preeclamptic women as compared to the GH and normotensive groups. There was no difference between groups in gelsolin, visfatin or histone 2B. Conclusion: Increased release of EMMPRIN and hyaluronan may contribute to an elevated pro-inflammatory response and tissue damage in women with PE. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Down syndrome (DS) is a common birth defect characterized by the trisomy of chromosome 21. DS-affected umbilical cords (UCs) of fetuses show altered architecture of the extracellular matrix. Overexpression of the chromosome 21 genes encoding the collagen type VI (COLVI) chains α1(VI) and α2(VI), COL6A1 and COL6A2, respectively, has also reported to occur in the nuchal skin of DS fetuses. The aim of this study was therefore to evaluate the COLVI content in euploid and DS-affected UCs and human skin fibroblasts, and to investigate the relationships between COLVI and hyaluronan (HA) and HA synthase-2 (HAS2). We found that the UCs of DS fetuses showed denser staining of COLVI and increased COL6A2 expression at both early and term gestational ages. In vitro expression studies in DS-derived fibroblasts showed similarly increased amounts of α1(VI) and α2(VI) chains at the protein and transcriptional level, supporting the hypothesis of the gene dosage effect. Furthermore, increased levels of HA and HAS2 were also found in DS-derived skin fibroblast cultures. Notably, silencing of COL6A2 in DS-derived cells resulted in downregulation of HAS2, with a simultaneous decrease in secreted HA. Exogenous addition of COLVI to normal fibroblasts did not have any effect on HAS2 expression. In conclusion, UCs and skin fibroblasts in DS show significant increases in COLVI and HA; the overexpression of COL6A2 in DS tissue and cells is closely related to the increased expression of HAS2. These data may explain the DS phenotypes and their effects in organ tissue maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptokinetic cell migration across surfaces is mediated by adhesion receptors including β1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both β1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only β1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-β1 and anti-α2 integrin mAbs, whereas mAbs blocking CD44, α3, α5, α6, or αv integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of β1 integrins was not restored via CD44. Because α2β1-mediated migration was neither synergized nor replaced by CD44–HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DG42 is one of the main mRNAs expressed during gastrulation in embryos of Xenopus laevis. Here we demonstrate that cells expressing this mRNA synthesize hyaluronan. The cloned DG42 cDNA was expressed in rabbit kidney (RK13) and human osteosarcoma (tk-) cells using a vaccinia virus system. Lysates prepared from infected cells were incubated in the presence of UDP-N-acetylglucosamine and UDP-[14C]glucuronic acid. This yielded a glycosaminoglycan with a molecular mass of about 200,000 Da. Formation of this product was only observed in the presence of both substrates. The glycosaminoglycan could be digested with testicular hyaluronidase and with Streptomyces hyaluronate lyase but not with Serratia chitinase. Hyaluronan synthase activity could also be detected in homogenates of early Xenopus embryos, and the activity was found to correlate with the expression of DG42 mRNA at different stages of development. Synthesis of hyaluronan is thus an early event after midblastula transition, indicating its importance for the ensuing cell movements in the developing embryo. Our results are at variance with a recent report (Semino, C. E. & Robbins, P. W. (1995) Proc. Natl. Acad. Sci. USA 92, 3498-3501) that DG42 codes for an enzyme that catalyzes the synthesis of chitin-like oligosaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate the efficacy and tolerability of a course of 5 injections of hyaluronan (HA) given at intervals of one week in patients with symptomatic, mild to moderate osteoarthritis (OA) of the knee. Methods: A double blind, randomized, parallel group, multicenter (17 centers), saline vehicle-controlled study was conducted over 18 weeks. Patients received either 25 mg (2.5 ml) HA in a phosphate buffered solution or 2.5 ml vehicle containing only the buffer by intraarticular injection. Five injections were given at one week intervals and the patients were followed for a further 13 weeks. The Western Ontario McMaster (WOMAC) OA instrument was used as the primary efficacy variable and repeated measures analysis of covariance was used to compare the 2 treatments over Weeks 6, 10, 14, and 18. Results. Of 240 patients randomized for inclusion in the study, 223 were evaluable for the modified intention to treat analysis. The active treatment and control groups were comparable for demographic details, OA history, and previous treatments. Scores for the pain and stiffness subscales of the WOMAC were modestly but significantly lower in the HA-treated group overall (Weeks 6 to 18; p < 0.05) and the statistically significant difference from the control was not apparent until after the series of injections was complete. The physical function subscale did not reach statistical significance (p = 0.064). Tolerability of the procedure was good and there were no serious adverse events that were considered to have a possible causal relationship with the study treatment. Conclusion. Intraarticular HA treatment was significantly more effective than saline vehicle in mild to moderate OA of the knee for the 13 week postinjection period of the study.