5 resultados para HUSY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of two zeolites, HUSY, NaY and a mesoporous synthesized Al-MCM-41 material on the smoke composition of ten commercial cigarettes brands has been studied. Cigarettes were prepared by mixing the tobacco with the three powdered materials, and the smoke obtained under the ISO conditions was analyzed. Up to 32 compounds were identified and quantified in the gas fraction and 80 in the total particulate matter (TPM) condensed in the cigarettes filters and in the traps located after the mouth end of the cigarettes. Al-MCM-41 is by far the best additive, providing the highest reductions of the yield for most compounds and brands analyzed. A positive correlation was observed among the TPM and nicotine yields with the reduction obtained in nicotine, CO, and most compounds with the three additives. The amount of ashes in additive free basis increases due to the coke deposited on the solids, especially with Al-MCM-41. Nicotine is reduced with Al-MCM-41 by an average of 34.4% for the brands studied (49.5% for the brand where the major reduction was obtained and 18.5 for the brand behaving the worst). CO is reduced by an average of 18.6% (ranging from 10.3 to 35.2% in the different brands).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean oil transesterification with ethanol was carried out in a batch reactor using USY zeolites modified with barium and strontium (15 wt.%) as catalysts. A series of three catalytic cycles were performed for each zeolite without any loss of activity. The biodiesel product was analyzed by HPLC and FT-Raman, and the catalysts by pyridine and CO2 adsorption. Ba/USY provided higher conversions (> 97%) than Sr/USY (< 75%). The increased catalytic activity of Ba/USY was attributed to two different effects: a larger number of basic sites; and a lower interaction between barium species and HUSY BrØnsted sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho descreve detalhadamente o efeito da quantidade de cério na estrutura e morfologia da zeólita NH4USY. Ce-USY (2-25% m/m de CeO2) foi obtido por impregnação úmida de CeCl3 seguida de calcinação a 550ºC por 8 h. Em quantidades baixas (2-10%), foi observado que as espécies de cério encontram-se nas posições de troca iônica na rede, enquanto em maiores teores (15-25%) pequenos agregados formaram-se na superfície da HUSY. Difratometria de raios X (XRD) mostrou apenas reflexões relacionadas à HUSY, confirmando a alta dispersão das espécies de cério, porém as análises por espectroscopia Raman com transformada de Fourier (FT-Raman) detectaram CeOx para os materiais acima de 10%. A reação do CeCl3 com NH4USY produziu NH4Cl, o qual se decompõe em HCl, ocasionando a desaluminização da rede. Os materiais apresentaram um aumento da razão Lewis/Brønsted com o aumento da quantidade de cério, devido a interação do excesso de cério com os grupos OH da USY e consequente formação de espécies CeOx.