957 resultados para HUNCHBACK MESSENGER-RNA
Resumo:
Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloprotemases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mENA levels. Zyniographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-Wa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloprotemnases (83 kDa and 110 Wa and in an activation of the 72-Wa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation, lmmunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 Wa, 83 Wa, and 110 Wa and a triton-insoluble gelatinase of 225 Wa, These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.
Resumo:
Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages, We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese, The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA, Withdrawal of Mg2+ from the polyadenylation reaction rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes, Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species, Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis, Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.
Resumo:
Dexamethasone has a potentiating effect on phenobarbitone mediated induction of cytochrome P-450b + e mRNAs in adult rat liver. However, the glucocorticoid inhibits phenobarbitone-activated transcription of cytochrome P-450b + e mRNAs by 60-70%. This inhibitory effect is evident in run-off transcription of the endogenous genes as well as in the transcription of an added cloned gene fragment. Dexamethasone inhibits the phenobarbitone-mediated increase in the binding of a transcription factor(s) to the upstream region of the gene as evidenced by gel retardation and Southwestern blot analysis. The glucocorticoid does not stabilize the phenobarbitone-induced polyribosomal cytochrome P-450b + e mRNAs but appears to stabilize the nuclear transcripts. It is proposed that a negative element may mediate the action of dexamethasone at the level of nuclear transcription and stabilization of the nuclear transcript may account for the potentiating effect of the glucocorticoid on phenobarbitone-mediated increase in cytochrome P-450b + e mRNAs in the cytoplasm of the adult rat liver. However, the cytochrome P-450b protein levels are slightly lower in phenobarbitone + dexamethasone treatment than in phenobarbitone-treated liver microsomes.
Resumo:
Anew integrated sequence-structure database, called IADE (Integrated ASTRAL-DSSP-EMBL), incorporating matching mRNA sequence, amino acid sequence, and protein secondary structural data, is constructed. It includes 648 protein domains. Based on the IADE database, we studied the relation between RNA stem-loop frequencies and protein secondary structure. It was found that the alpha-helices and beta-strands on proteins tend to be preferably "coded" by mRNA stem region, while the coils on proteins tend to be preferably "coded" by mRNA loop region. These tendencies are more obvious if we observe the structural words (SWs). An SW is defined by a four-amino-acid-fragment that shows the pronounced secondary structural (alpha-helix or beta-strand) propensity. It is demonstrated that the deduced correlation between protein and mRNA structure can hardly be explained as the stochastic fluctuation effect. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
Resumo:
Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.
Resumo:
Objective: To identify genes specifically expressed in mammalian oocytes using an in silico subtraction, and to characterize the mRNA patterns of selected genes in oocytes, embryos, and adult tissues. Design: Comparison between oocyte groups and between early embryo stages. Setting: Laboratories of embryo manipulation and molecular biology from Departamento de Genetica (FMRP) and Departamento de Ciencias Basicas (FZEA) - University of Sao Paulo. Sample(s): Oocytes were collected from slaughtered cows for measurements, in vitro fertilization, and in vitro embryo culture. Somatic tissue, excluding gonad and uterus tissue, was collected from male and female cattle. Main Outcome Measure(s): Messenger RNA levels of poly(A)-binding protein nuclear-like 1 (Pabpnl1) and methyl-CpG-binding domain protein 3-like 2 (Mbd3l2). Result(s): Pabpnl1 mRNA was found to be expressed in oocytes, and Mbd3l2 transcripts were present in embryos. Quantification of Pabpnl1 transcripts showed no difference in levels between good-and bad-quality oocytes before in vitro maturation (IVM) or between good-quality oocytes before and after IVM. However, Pabpnl1 transcripts were not detected in bad-quality oocytes after IVM. Transcripts of the Mbd3l2 gene were found in 4-cell, 8-cell, and morula-stage embryos, with the highest level observed in 8-cell embryos. Conclusion(s): Pabpnl1 gene expression is restricted to oocytes and Mbd3l2 to embryos. Different Pabpnl1 mRNA levels in oocytes of varying viability suggest an important role in fertility involving the oocyte potential for embryo development. (Fertil Steril (R) 2010; 93: 2507-12. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
Tamoxifen was proven to reduce the incidence of breast cancer by 49% in women at increased risk of the disease in the Breast Cancer Prevention Trial. In order to identify potential candidates to explain the preventive effect induced by tamoxifen on breast cancer, normal breast tissue obtained from 42 fibroadenoma patients, randomly assigned to receive placebo or tamoxifen, was analyzed by the reverse Northern blot and RT-PCR techniques. The cDNA fragments used on Northern blot membranes were generated by the Human Cancer Genome Project funded by the Ludwig Institute for Cancer Research and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Total RNA was obtained from normal breast tissue from patients with clinical, cytological and ultrasound diagnosis of fibroadenoma. After a 50-day treatment with tamoxifen (10 or 20 mg/day) or placebo, normal breast tissue adjacent to the tumor was collected during lumpectomy with local anesthesia. One differentially expressed gene, Calcium/calmodulin-dependent protein kinase II (CaMKII), was found to be down-regulated during TAM treatment. CaMKII is an ubiquitous serine/threonine protein kinase that has been implicated in the diverse effects of hormones utilizing Ca2+ as a second messenger as well as in c-fos activation. These results indicate that the down-regulation of CaMKII induced by TAM might represent alternative or additional mechanisms of the action of this drug on cell cycle control and response to hormones in normal human breast tissue.