779 resultados para HUMAN SKELETAL REMAINS
Resumo:
The assessment of age-at-death in non-adult skeletal remains is under constant review. However, in many past societies an individual's physical maturation may have been more important in social terms than their exact age, particularly during the period of adolescence. In a recent article (Shapland and Lewis: Am J Phys Anthropol 151 (2013) 302–310) highlighted a set of dental and skeletal indicators that may be useful in mapping the progress of the pubertal growth spurt. This article presents a further skeletal indicator of adolescent development commonly used by modern clinicians: cervical vertebrae maturation (CVM). This method is applied to a collection of 594 adolescents from the medieval cemetery of St. Mary Spital, London. Analysis reveals a potential delay in ages of attainment of the later CVM stages compared with modern adolescents, presumably reflecting negative environmental conditions for growth and development. The data gathered on CVM is compared to other skeletal indicators of pubertal maturity and long bone growth from this site to ascertain the usefulness of this method on archaeological collections.
Resumo:
All currently available human skeletal remains from the Wadi Howar (Eastern Sahara, Sudan) were employed in an anthropological study. The study’s first aim was to describe this unique 5th to 2nd millennium BCE material, which comprised representatives of all three prehistoric occupation phases of the region. Detecting diachronic differences in robusticity, occupational stress levels and health within the spatially, temporally and culturally heterogeneous sample was its second objective. The study’s third goal was to reveal metric and non-metric affinities between the different parts of the series and between the Wadi Howar material and other relevant prehistoric as well as modern African populations. rnThe reconstruction and comprehensive osteological analysis of 23 as yet unpublished individuals, the bulk of the Wadi Howar series, constituted the first stage of the study. The analyses focused on each individual’s in situ position, state of preservation, sex, age at death, living height, living weight, physique, biological ancestry, epigenetic traits, robusticity, occupational stress markers, health and metric as well as morphological characteristics. Building on the results of these efforts and the re-examination of the rest of the material, the Wadi Howar series as a whole, altogether 32 individuals, could be described. rnA wide variety of robusticity, occupational stress and health variables was evaluated. The pre-Leiterband (hunter-gatherer-fisher/hunter-gatherer-fisher-herder) and the Leiterband (herder-gatherer) data of over a third of these variables differed statistically significantly or in tendency from each other. The Leiterband sub-sample was characterised by higher enamel hypoplasia frequencies, lower mean ages at death and less pronounced expressions of occupational stress traits. This pattern was interpreted as evidence that the adoption and intensification of animal husbandry did probably not constitute reactions to worsening conditions. Apart from that, the relevant observations, noteworthy tendencies and significant differences were explained as results of a broader spectrum of pre-Leiterband subsistence activities and the negative side effects of the increasingly specialised herder-gatherer economy of the Leiterband phase. rnUsing only the data which could actually be collected from it, multiple, separate, individualised discriminant function analyses were carried out for each Wadi Howar skeleton to determine which prehistoric and which modern comparative sample it was most similar to. The results of all individual analyses were then summarised and examined as a whole. Thus it became possible to draw conclusions about the affinities the Wadi Howar material shared with prehistoric as well as modern populations and to answer questions concerning the diachronic links between the Wadi Howar’s prehistoric populations. When the Wadi Howar remains were positioned in the context of the selected prehistoric (Jebel Sahaba/Tushka, A-Group, Malian Sahara) and modern comparative samples (Southern Sudan, Chad, Mandinka, Somalis, Haya) in this fashion three main findings emerged. Firstly, the series as a whole displayed very strong affinities with the prehistoric sample from the Malian Sahara (Hassi el Abiod, Kobadi, Erg Ine Sakane, etc.) and the modern material from Southern Sudan and, to a lesser extent, Chad. Secondly, the pre-Leiterband and the Leiterband sub-sample were closer to the prehistoric Malian as well as the modern Southern Sudanese material than they were to each other. Thirdly, the group of pre-Leiterband individuals approached the Late Pleistocene sample from Jebel Sahaba/Tushka under certain circumstances. A theory offering explanations for these findings was developed. According to this theory, the entire prehistoric population of the Wadi Howar belonged to a Saharo-Nilotic population complex. The Jebel Sahaba/Tushka population constituted an old Nilotic and the early population of the Malian Sahara a younger Saharan part of this complex. The pre-Leiterband groups probably colonised the Wadi Howar from the east, either during or soon after the original Saharo-Nilotic expansion. Unlike the pre-Leiterband groups, the Leiterband people originated somewhere west of the Wadi Howar. They entered the region in the context of a later, secondary Saharo-Nilotic expansion. In the process, the incoming Leiterband groups absorbed many members of the Wadi Howar’s older pre-Leiterband population. The increasing aridification of the Wadi Howar region ultimately forced its prehistoric inhabitants to abandon the wadi. Most of them migrated south and west. They, or groups closely related to them, probably were the ancestors of the majority of the Nilo-Saharan-speaking pastoralists of modern-day Southern Sudan and Eastern Chad.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
[EN] Human skeletal muscle expresses leptin receptor mRNA; however, it remains unknown whether leptin receptors (OB-R) are also expressed at the protein level. Fourteen healthy men (age = 33.1 +/- 2.0 yr, height = 175.9 +/- 1.7 cm, body mass = 81.2 +/- 3.8 kg, body fat = 22.5 +/- 1.9%; means +/- SE) participated in this investigation. The expression of OB-R protein was determined in skeletal muscle, subcutaneous adipose tissue, and hypothalamus using a polyclonal rabbit anti-human leptin receptor. Three bands with a molecular mass close to 170, 128, and 98 kDa were identified by Western blot with the anti-OB-R antibody. All three bands were identified in skeletal muscle: the 98-kDa and 170-kDa bands were detected in hypothalamus, and the 98-kDa and 128-kDa bands were detected in thigh subcutaneous adipose tissue. The 128-kDa isoform was not detected in four subjects, whereas in the rest its occurrence was fully explained by the presence of intermuscular adipose tissue, as demonstrated using an anti-perilipin A antibody. No relationship was observed between the basal concentration of leptin in serum and the 170-kDa band density. In conclusion, a long isoform of the leptin receptor with a molecular mass close to 170 kDa is expressed at the protein level in human skeletal muscle. The amount of 170-kDa protein appears to be independent of the basal concentration of leptin in serum.
Resumo:
[en] Anthropological study of the human remains of a medieval cemetery in Leopoli-Cencelle in which the sex attribution, the estimation of age at death and the estimation of stature are taken into account.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
Resumo:
We examined acute molecular responses in skeletal muscle to divergent exercise stimuli by combining consecutive bouts of resistance and endurance exercise. Eight men [22.9 ± 6.3 yr, body mass of 73.2 ± 4.5 kg, peak O2 uptake (V?O2peak) of 54.0 ± 5.7 ml·kg-1·min-1] were randomly assigned to complete trials consisting of either resistance exercise (8 x 5 leg extension, 80% 1 repetition maximum) followed by a bout of endurance exercise (30 min cycling, 70% V?O2peak) or vice versa. Muscle biopsies were obtained from the vastus lateralis at rest, 15 min after each exercise bout, and after 3 h of passive recovery to determine early signaling and mRNA responses. Phosphorylation of Akt and Akt1Ser473 were elevated 15 min after resistance exercise compared with cycling, with the greatest increase observed when resistance exercise followed cycling (?55%; P < 0.01). TSC2-mTOR-S6 kinase phosphorylation 15 min after each bout of exercise was similar regardless of the exercise mode. The cumulative effect of combined exercise resulted in disparate mRNA responses. IGF-I mRNA content was reduced when cycling preceded resistance exercise (-42%), whereas muscle ring finger mRNA was elevated when cycling was undertaken after resistance exercise (?52%; P < 0.05). The hexokinase II mRNA level was higher after resistance cycling (?45%; P < 0.05) than after cycling-resistance exercise, whereas modest increases in peroxisome proliferator-activated receptor gamma coactivator-1? mRNA did not reveal an order effect. We conclude that acute responses to diverse bouts of contractile activity are modified by the exercise order. Moreover, undertaking divergent exercise in close proximity influences the acute molecular profile and likely exacerbates acute "interference".
Resumo:
Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ?7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser 473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr 308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise-induced bioeffects in skeletal muscle.
Resumo:
Re-programming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time-course dependent changes in the muscular transcriptome following an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h post-exercise from eight healthy, endurance-trained, male individuals. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three h post-exercise, 102 gene sets were up-regulated [family wise error rate (FWER), P < 0.05]; including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1-signaling. Forty-eight h post-exercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were up-regulated. Ninety-six h post-exercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were up-regulated; including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h post-exercise transcriptome indicates substantial transcriptional activity, potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.