871 resultados para HUMAN SEPTIN COMPLEX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in beta-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amygdala is consistently implicated in biologically relevant learning tasks such as Pavlovian conditioning. In humans, the ability to identify individual faces based on the social outcomes they have predicted in the past constitutes a critical form of associative learning that can be likened to “social conditioning.” To capture such learning in a laboratory setting, participants learned about faces that predicted negative, positive, or neutral social outcomes. Participants reported liking or disliking the faces in accordance with their learned social value. During acquisition, we observed differential functional magnetic resonance imaging activation across the human amygdaloid complex consistent with previous lesion, electrophysiological, and functional neuroimaging data. A region of the medial ventral amygdala and a region of the dorsal amygdala/substantia innominata showed signal increases to both Negative and Positive faces, whereas a lateral ventral region displayed a linear representation of the valence of faces such that Negative > Positive > Neutral. This lateral ventral locus also differed from the dorsal and medial loci in that the magnitude of these responses was more resistant to habituation. These findings document a role for the human amygdala in social learning and reveal coarse regional dissociations in amygdala activity that are consistent with previous human and nonhuman animal data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure. The dearth of structural information concerning the C-terminal region has motivated the present study in which the putative C-terminal domains of human SEPT2, SEPT6 and SEPT7 were expressed in E. coli and purified to homogeneity. The thermal stability and secondary structure content of the domains were studied by circular dichroism spectroscopy, and homo- and hetero-interactions were investigated by size exclusion chromatography, chemical cross-linking, analytical ultracentrifugation and surface plasmon resonance. Our results show that SEPT6-C and SEPT7-C are able to form both homo- and heterodimers with a high alpha-helical content in solution. The heterodimer is elongated and considerably more stable than the homodimers, with a K (D) of 15.8 nM. On the other hand, the homodimer SEPT2-C has a much lower affinity, with a K (D) of 4 mu M, and a moderate alpha-helical content. Our findings present the first direct experimental evidence toward better understanding the biophysical properties and coiled-coil pairings of such domains and their potential role in filament assembly and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevance of human joint models was shown in the literature. In particular, the great importance of models for the joint passive motion simulation (i.e. motion under virtually unloaded conditions) was outlined. They clarify the role played by the principal anatomical structures of the articulation, enhancing the comprehension of surgical treatments, and in particular the design of total ankle replacement and ligament reconstruction. Equivalent rigid link mechanisms proved to be an efficient tool for an accurate simulation of the joint passive motion. This thesis focuses on the ankle complex (i.e. the anatomical structure composed of the tibiotalar and the subtalar joints), which has a considerable role in human locomotion. The lack of interpreting models of this articulation and the poor results of total ankle replacement arthroplasty have strongly suggested devising new mathematical models capable of reproducing the restraining function of each structure of the joint and of replicating the relative motion of the bones which constitute the joint itself. In this contest, novel equivalent mechanisms are proposed for modelling the ankle passive motion. Their geometry is based on the joint’s anatomical structures. In particular, the role of the main ligaments of the articulation is investigated under passive conditions by means of nine 5-5 fully parallel mechanisms. Based on this investigation, a one-DOF spatial mechanism is developed for modelling the passive motion of the lower leg. The model considers many passive structures constituting the articulation, overcoming the limitations of previous models which took into account few anatomical elements of the ankle complex. All the models have been identified from experimental data by means of optimization procedure. Then, the simulated motions have been compared to the experimental one, in order to show the efficiency of the approach and thus to deduce the role of each anatomical structure in the ankle kinematic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase, a ribonucleoprotein complex, adds hexameric repeats called “telomeres” to the growing ends of chromosomal DNA. Characterization of mammalian telomerase has been elusive because of its low level of expression. We describe a bioinformatics approach to enrich and characterize the human telomerase complex. Using local sequence homology search methods, we detected similarity of the Tetrahymena p80 subunit of telomerase with the autoantigen Ro60. Antibodies to Ro60 immunoprecipitated the telomerase activity. Ro60 and p80 proteins were cross-recognizable by antibodies to either protein. Telomerase activity and the RNA component of telomerase complex were localized to a doublet in a native gel from the Ro60 antibody-precipitated material. The enriched material showed specific binding to a TTA GGG probe in vitro in an RNA template-dependent manner. Polyclonal antibodies to the doublet also immunoprecipitated the telomerase activity. These results suggest an evolutionary conservation of the telomerase proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper maintenance and duplication of the genome require accurate recombination between homologous DNA molecules. In eukaryotic cells, the Rad51 protein mediates pairing between homologous DNA molecules. This reaction is assisted by the Rad54 protein. To gain insight into how Rad54 functions, we studied the interaction of the human Rad54 (hRad54) protein with double-stranded DNA. We have recently shown that binding of hRad54 to DNA induces a change in DNA topology. To determine whether this change was caused by a protein-constrained change in twist, a protein-constrained change in writhe, or the introduction of unconstrained plectonemic supercoils, we investigated the hRad54–DNA complex by scanning force microscopy. The architecture of the observed complexes suggests that movement of the hRad54 protein complex along the DNA helix generates unconstrained plectonemic supercoils. We discuss how hRad54-induced superhelical stress in the target DNA may function to facilitate homologous DNA pairing by the hRad51 protein directly. In addition, the induction of supercoiling by hRad54 could stimulate recombination indirectly by displacing histones and/or other proteins packaging the DNA into chromatin. This function of DNA translocating motors might be of general importance in chromatin metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states. Copyright © 2004 Pathological Society of Great Britain and Ireland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins—ySKP1, CDC53 (Cullin), and the F-box protein CDC4—that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2–hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA–ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA–Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA–ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Veugelers et al. (July 29 issue)1 report on patients with the trismus–pseudocamptodactyly syndrome as having a “Carney complex variant.” Among more than 500 patients with the Carney complex in our database, there are none with the trismus–pseudocamptodactyly syndrome.2,3...