996 resultados para HUBBARD-MODEL
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the different types of superfluid phases that can arise in the spin-1 case. In particular, our mean-field theory can distinguish polar and ferromagnetic superfluids, Mott insulator, that arise at integer fillings at zero temperature, and normal Bose liquids into which the Mott insulators evolve at finite temperatures. We find, in contrast to the spinless case, that several of the superfluid-Mott insulator transitions are of first order at finite temperatures. Our systematic study yields rich phase diagrams that include first-order and second-order transitions and a variety of tricritical points. We discuss the possibility of realizing such phase diagrams in experimental systems.
Resumo:
We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constant with U/t are discussed.
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
We point out possibilities for exotic physics in barium bismuthates, from a detailed study of the negative-U, extended-Hubbard model proposed for these systems. We emphasize the different consequences of electronic and phononic mechanisms for negative U. We show that, for an electronic mechanism, the semiconducting phases must be unique, with their transport properties dominated by charge ± 2e Cooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Resumo:
Ground-state properties of the two-dimensional Hubbard model with point-defect disorder are investigated numerically in the Hartree-Fock approximation. The phase diagram in the p(point defect concentration)-delta(deviation from half filling) plane exhibits antiferromagnetic, spin-density-wave, paramagnetic, and spin-glass-like phases. The disorder stabilizes the antiferromagnetic phase relative to the spin-density-wave phase. The presence of U strongly enhances the localization in the antiferromagnetic phase. The spin-density-wave and spin-glass-like phases are weakly localized.
Resumo:
Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
We consider a one-dimensional Hubbard model in the presence of disorder. We compute the charge stiffness for a mesoscopic ring as a function of the size L, which is a measure of the persistent currents. We find that for finite disorder the persistent currents of the system with repulsive interactions are larger than those of the system with attractive interactions. This counterintuitive result is due to the fact that local-density fluctuations are reduced in the presence of repulsive interactions.
Resumo:
Using the d=infinity or local-approximation approach to the half-filled Hubbard model on a compressible lattice, we present a detailed study of the transport and structural properties near the paramagnetic metal-insulator transition. The results describe qualitatively most of the observed data in V2O3, including the metal-insulator-metal crossover [Kuwamoto et al., Phys. Rev. B 22, 2626 (1980)]. In addition, we discuss an interesting and intrinsic reentrance feature in the resistivity of the half-filled Hubbard model at high temperatures.
Resumo:
We use the extended Hubbard model to investigate the properties of the charge- and spin-density-wave phases in the presence of a nearest-neighbors repulsion term in the framework of the slave-boson technique. We show that, contrary to Hartree-Fock results, an instablity may occur for sufficiently high values of the Hubbard repulsion, both in the spin- and charge-density-wave phase, which makes the system discontinuously jump to a phase with a smaller or zero wave amplitude. The limits of applicability of our approach are discussed and our results are compared with previous numerical analysis. The phase diagram of the model at half-filling is determined.
Resumo:
We have studied the metal-insulator transition at integer fillings in a triply degenerate Hubbard model using the Lanczos method. The critical Coulomb interaction strength U-c, is found to depend strongly on the band filling, with U-c similar to root 3 W (W is the bandwidth) at half filling for this case with threefold degeneracy. We discuss the implications of our results on metal-insulator transitions in strongly correlated systems in general, and on the unusual electronic ground state of the alkali-metal-doped fullerenes, in particular. [S0163-1829(99)11003-8].